Monotonic Function: Derivative and Interval Analysis for f(x) = x^2 + x + 1

  • Thread starter Thread starter player1_1_1
  • Start date Start date
  • Tags Tags
    Function
player1_1_1
Messages
112
Reaction score
0

Homework Statement


function y(x) = x^2 + x + 1

The Attempt at a Solution


I count derivative: f^{\prime} (x) = 2x + 1 and now f^{\prime (x) = 0 when x=-\frac{1}{2} and how to describe monotonic now? f(x) is decreasing for x \in \left(- \infty; -\frac{1}{2}\right] or x \in \left(- \infty; -\frac{1}{2}\right)? open or closed interval? and now increasing for what x?
 
Physics news on Phys.org
i'd say two open intervals
f(x) is decreasing for x \in \left(- \infty, -\frac{1}{2}\right)
f(x) is increasing for x \in \left(-\frac{1}{2}\right, \infty \right)

and neither at x = -\frac{1}{2}
 
I disagree.

f(x) has an absolute minimum of ‒3/4 at x = ‒1/2.

f(x)>f(‒1/2) for x > ‒1/2, so f(x) is monotonic increasing on [‒1/2, +∞) .

Similarly, f(x) is monotonic decreasing on (‒∞ , ‒1/2] .
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top