Moving Charges to Infinity: Work Required and Comparison

  • Thread starter Thread starter aoc0708
  • Start date Start date
  • Tags Tags
    Charge Infinity
aoc0708
Messages
3
Reaction score
0

Homework Statement



The figure below shows three charges at the corners of a rectangle of length x = 0.35 m and height y = 0.22 m.

http://www.webassign.net/walker/20-23alt.gif (rectangle image)

(a) How much work must be done to move the +2.7 µC charge to infinity?

(b) Suppose, instead, that we move the -6.1 µC charge to infinity. Is the work required in this case greater than, less than, or the same as when we moved the +2.7 µC charge to infinity?

Explain.

(c) Calculate the work needed to move the -6.1 µC charge to infinity?


Homework Equations



W= kq1q2/r

The Attempt at a Solution



I got the correct answer for (a) like this:

W= (9e9)(2.7e-6)(6.1e-6)/.35 + (9e9)(2.7e-6)(3.3e-6)/.4134, with .4134 as the distance between the -3.3 charge and the 2.7 charge via the pythagorean theorem.
.61749 J, was correct; and I guessed that it would take less work to move the -6.1 µC charge for (b). But I'm not entirely sure why this is the case-- is it simply because the distances between the charges are smaller? And for some reason, when I use the same method on (c) as I did on (a), I'm wrong:

(9e9)(6.1e-6)(2.7e-6)/.35 + (9e9)(6.1e-6)(3.3e-6)/.22 yields 1.247, which is not the correct answer. Why is this?

Thank you!


Thank you!
 
Physics news on Phys.org
It looks to me like you need to take into account the sign of the charges. Remember opposite charges attract while same charges repel. The -6.1 uC charge is easier to move to infinity because it sees 1 positive charge attracting it, but also 1 negative charge repelling it.
 
Ah, I see what you mean. Thank you! The correct answer was -.3999 Joules.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top