1. PF Contest - Win "Conquering the Physics GRE" book! Click Here to Enter
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Nabla problem -- Gradient

  1. Nov 3, 2014 #1
    1. The problem statement, all variables and given/known data
    Calculate [tex]\nabla e^{i\vec{k}\cdot \vec{r}}[/tex]

    2. Relevant equations
    [tex]\nabla f(r)=\frac{df}{dr}\nabla r=\frac{df}{dr}\frac{\vec{r}}{r} [/tex]

    3. The attempt at a solution
    I have a problem. I know result
    [tex]=\nabla e^{i\vec{k}\cdot \vec{r}}=i\vec{k} e^{i\vec{k}\cdot \vec{r}}[/tex]
    Last edited: Nov 3, 2014
  2. jcsd
  3. Nov 3, 2014 #2


    User Avatar
    Homework Helper

    This problem is much clearer when broken up componentwise:
    ##e^{i \vec k \cdot \vec r } = e^{i (k_x x + k_y y + k_z z) } ##
    Where ##\vec k = k_x \hat x + k_y \hat y + k_z \hat z ## and ##\vec r = x \hat x + y \hat y + z \hat z##
  4. Nov 4, 2014 #3
    Yes but for that way we need a lot of time. Perhaps
    [tex]\nabla=\sum_w\vec{e}_w\frac{\partial}{\partial x_w}[/tex]
    [tex]e^{i \vec{k}\cdot \vec{r}}=e^{i\sum_q k_q x_q} [/tex]
    but I get a problem with this sums. Maybe
    [tex]\sum_w\vec{e}_w\frac{\partial}{\partial x_w}e^{i\sum_q k_q x_q}=[/tex]
    [tex]=\sum_w\vec{e}_we^{i\sum_q k_q x_q}(\frac{\partial}{\partial x_w}i\sum_q k_q x_q)=[/tex]
    [tex]=e^{i\vec{k}\cdot \vec{r}}i \sum_w \vec{e}_w k_{w}=[/tex]
    [tex]=i\vec{k}e^{i\vec{k}\cdot \vec{r}}[/tex]

    but again I did not use theorem
    [tex]\nabla f(r)=\frac{df}{dr}\nabla r[/tex]
  5. Nov 4, 2014 #4


    User Avatar
    Homework Helper

    let ##f(\vec r) = e^{ik_x \hat x +ik_y \hat y+ik_z \hat z}## and ##\vec r = ik_x \hat x +ik_y \hat y+ik_z \hat z = i \vec k \cdot \vec r##
    then use the theorem.
  6. Nov 4, 2014 #5
    I think that "relevant equation",
    [itex]\nabla f(r)=\frac{df}{dr}\nabla r=\frac{df}{dr}\frac{\vec{r}}{r}[/itex],
    is not that relevant here:
    [itex]e^{i\vec{k}\cdot \vec{r}}\neq f(r)[/itex] since [itex]r = (x^2 + y^2 + z^2)^{1/2}[/itex].

    [itex]\nabla f(g(\vec r))=\frac{df}{dg}\nabla g(\vec r)[/itex]
    [itex] f(g) = e^g [/itex] and [itex] g(\vec r) = i \vec k \cdot \vec r[/itex].
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted

Similar Threads - Nabla problem Gradient Date
Maximum/minimum problem Yesterday at 4:00 AM
About Nabla and index notation Oct 23, 2016
Please help me understand this equation Apr 20, 2016
Derive grad T in spherical coordinates Apr 19, 2015
Divergence of vector field: Del operator/nabla Mar 10, 2015