- #1
njama
- 216
- 1
Hey!
Happy New Year 2013 to all of you!
I am in good mood for learning something new so I need advice.
I'm currently watching the videos for Machine learning from Stanford University, but I'm stuck at Lagrangian multipliers and duality.
I got solid background in Calculus I and II (I read and learned from the book by Irl Bivens and I really like it) but I've never learned about Lagrange multipliers nor Matrix Calculus, and now it's time to step my Calculus up
Also I got solid basic background in Linear Algebra but never learned about Eigenvalues and Eigenvectors or Semidefinite Matrices.
So I need some book for self-studying:
Here are the topics that are new to me:
Matrix Calculus 20
4.1 The Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 The Hessian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Gradients and Hessians of Quadratic and Linear Functions . . . . . . . . . . 23
4.4 Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5 Gradients of the Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.6 Eigenvalues as Optimization
3.10 The Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.11 Quadratic Forms and Positive Semidefinite Matrices . . . . . . . . . . . . . . 17
3.12 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.13 Eigenvalues and Eigenvectors of Symmetric Matrices . . . . . . . . . . . . . 19
Convex Optimization
Convex Optimization Part 2
Here are the materials from the course (there are documents in Section Notes).
Thanks a lot.
Regards.
Happy New Year 2013 to all of you!
I am in good mood for learning something new so I need advice.
I'm currently watching the videos for Machine learning from Stanford University, but I'm stuck at Lagrangian multipliers and duality.
I got solid background in Calculus I and II (I read and learned from the book by Irl Bivens and I really like it) but I've never learned about Lagrange multipliers nor Matrix Calculus, and now it's time to step my Calculus up
Also I got solid basic background in Linear Algebra but never learned about Eigenvalues and Eigenvectors or Semidefinite Matrices.
So I need some book for self-studying:
Here are the topics that are new to me:
Matrix Calculus 20
4.1 The Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 The Hessian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Gradients and Hessians of Quadratic and Linear Functions . . . . . . . . . . 23
4.4 Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5 Gradients of the Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.6 Eigenvalues as Optimization
3.10 The Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.11 Quadratic Forms and Positive Semidefinite Matrices . . . . . . . . . . . . . . 17
3.12 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.13 Eigenvalues and Eigenvectors of Symmetric Matrices . . . . . . . . . . . . . 19
Convex Optimization
Convex Optimization Part 2
Here are the materials from the course (there are documents in Section Notes).
Thanks a lot.
Regards.