Need Help with Integration for Solving ODE

The-Mad-Lisper
Messages
12
Reaction score
1

Homework Statement


\frac{dy}{dx}=y^2-1
y(0)=3

Homework Equations


\frac{dy}{dx}=f(y) \leftrightarrow \frac{dx}{dy}=\frac{1}{f(y)}

The Attempt at a Solution


\frac{dx}{dy}=\frac{1}{y^2-1}
dx=\frac{dy}{y^2-1}
\int dx=\int \frac{dy}{y^2-1}+C
x=\int \frac{dy}{y^2-1}+C
How do I integrate \int \frac{dy}{y^2-1}?
 
Physics news on Phys.org
The-Mad-Lisper said:

Homework Statement


\frac{dy}{dx}=y^2-1
y(0)=3

Homework Equations


\frac{dy}{dx}=f(y) \leftrightarrow \frac{dx}{dy}=\frac{1}{f(y)}

The Attempt at a Solution


\frac{dx}{dy}=\frac{1}{y^2-1}
dx=\frac{dy}{y^2-1}
\int dx=\int \frac{dy}{y^2-1}+C
x=\int \frac{dy}{y^2-1}+C
How do I integrate \int \frac{dy}{y^2-1}?
Partial fractions. See https://www.physicsforums.com/insights/partial-fractions-decomposition/ if you are uncertain about this technique.
 
Hi Mad:

I will give you a hint. think about factoring y2-1 = f1(y) × f2(y).
Then think about finding A and B such that 1/(f1 × f2) = A/f1 + B/f2.

Hope this helps.

Regards,
Buzz
 
Thanks, I got the answer.
 
  • Like
Likes Buzz Bloom
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top