Need help with spring mass oscillator and its period

AI Thread Summary
The discussion focuses on understanding how the period of a spring-mass oscillator changes with variations in mass, stiffness, and amplitude. The key equation for the period is T = 2π√(m/k). When the mass is quadrupled while keeping stiffness constant, the period increases by a factor of 2. Conversely, quadrupling the spring stiffness while maintaining mass decreases the period by a factor of 1/2. The discussion emphasizes the importance of analyzing the effects of changing these variables rather than directly solving for the period.
dayspassingby
Messages
2
Reaction score
0
Homework Statement
This is a series of questions about the effect on the period of a spring-mass oscillator when you change the mass, the stiffness, or the amplitude.

(a) For a spring-mass oscillator, if you quadruple the mass but keep the stiffness the same, by what numerical factor does the period change? That is, if the original period was and the new period is , what is ? It is useful to write out the expression for the period and ask yourself what would happen if you quadrupled the mass.

(b) If, instead, you quadruple the spring stiffness but keep the mass the same, what is the factor ?

(c) If, instead, you quadruple the mass and also quadruple the spring stiffness, what is the factor ?

(d) If, instead, you quadruple the amplitude (keeping the original mass and spring stiffness), what is the factor ?
Relevant Equations
T = 2pi sqrt(m/k) is the equation for a period
I thought I would multiply b to the whole equation of T, but I have no idea how to formulate into the type of solution it wants
 
Physics news on Phys.org
dayspassingby said:
Homework Statement:: This is a series of questions about the effect on the period of a spring-mass oscillator when you change the mass, the stiffness, or the amplitude.

(a) For a spring-mass oscillator, if you quadruple the mass but keep the stiffness the same, by what numerical factor does the period change? That is, if the original period was and the new period is , what is ? It is useful to write out the expression for the period and ask yourself what would happen if you quadrupled the mass.

(b) If, instead, you quadruple the spring stiffness but keep the mass the same, what is the factor ?

(c) If, instead, you quadruple the mass and also quadruple the spring stiffness, what is the factor ?

(d) If, instead, you quadruple the amplitude (keeping the original mass and spring stiffness), what is the factor ?
Relevant Equations:: T = 2pi sqrt(m/k) is the equation for a period

I thought I would multiply b to the whole equation of T, but I have no idea how to formulate into the type of solution it wants
This problem is not asking you to solve for the period but to study how it changes when the variables change. $$T = 2 \pi \sqrt{\frac{m}{k}}$$ What happens to ##T## if you change things like the mass ##m## or the stiffness ##k## in the way the problem asks?
 
With problems like this, if you cannot just look at the expression and figure out the factor, it helps if you (a) write two expressions for the "what happens to" quantity, using subscripts 1 and 2; (b) substitute two different values for the quantity that changes, one multiplied by 1 and the other by the factor it changes; (c) divide the second equation by the first and set it equal to ##f## (for factor); (d) simplify and find ##f##. Here is an example.

The area of a circle is ##A=\pi R^2##. What happens to the area when you triple the radius?
(a) ##~~A_1=\pi R_1^2~;~~A_2=\pi R_2^2##
(b)##~~A_1=\pi (1*R)^2~;~~A_2=\pi (3*R)^2##
(c)##~~f=\dfrac{A_2}{A_1}=\dfrac{\pi (3*R)^2}{\pi (1*R)^2}##
(d)##~~f=\dfrac{\cancel{\pi} ~{9}\cancel{ R^2}}{\cancel{\pi}\cancel{ R^2}}=9.##
Answer: The area increases by a factor of 9.

Do you see how it works? Go for it.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top