Net force on a particle with potential energy function

AI Thread Summary
The discussion centers on calculating the net force on a particle using the potential energy function U(x) = 1/x + x² + x - 1 at x = 3.29 m. The correct approach involves taking the negative derivative of the potential energy function, resulting in F(x) = -dU/dx. Initially, a participant mistakenly calculated the force without considering the negative sign, leading to an incorrect value. After recognizing the importance of the negative sign, they recalculated and obtained the correct answer. The conversation highlights the significance of understanding the relationship between force and potential energy in physics.
Koscher
Messages
21
Reaction score
0

Homework Statement



A particle is moving along the x-axis subject to the potential energy function U(x) = 1/x + x2 + x - 1. Determine the x-component of the net force on the particle at the coordinate x= 3.29m.

Homework Equations



U(x) = integral(F(x)dx)

The Attempt at a Solution



To find the net force I took one derivative of the potential energy equation. The resulting (-1/x2) + 2x +1. I then plugged in 3.29 for x and it resulted in 7.487. Which is not the correct answer. Now my though is that if i take the second derivative of the potential energy function and then plug in my value of x=3.29 m, then that would be correct. But I am really not sure.
 
Physics news on Phys.org
Koscher said:

Homework Statement



A particle is moving along the x-axis subject to the potential energy function U(x) = 1/x + x2 + x - 1. Determine the x-component of the net force on the particle at the coordinate x= 3.29m.

Homework Equations



U(x) = integral(F(x)dx)

Actually, the definition of the potential energy function for this 1D case isU(x) = -\int F(x)\,dxThe negative sign is important. As a result, F(x) = - \frac{dU}{dx} A motivation for this definition is so that the force points in the direction of maximum decrease in potential energy, which, if you think about it, is consistent with examples of conservative forces that you may have encountered already, such as gravity.

Koscher said:

The Attempt at a Solution



To find the net force I took one derivative of the potential energy equation. The resulting (-1/x2) + 2x +1. I then plugged in 3.29 for x and it resulted in 7.487. Which is not the correct answer. Now my though is that if i take the second derivative of the potential energy function and then plug in my value of x=3.29 m, then that would be correct. But I am really not sure.

No. If potential energy is the negative integral of force, then force is the negative derivative of potential energy, since integration and differentiation are inverse operations. So, basically, taking the second derivative makes no sense at all.
 
Thank you. I completely forgot the negative sign on the equation. When i took it into account I got the correct answer. Thank you.
 
Koscher said:
Thank you. I completely forgot the negative sign on the equation. When i took it into account I got the correct answer. Thank you.

No problem, you're welcome. :smile:
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top