Newtonian Mechanics:friction, tension and acceleration

AI Thread Summary
The discussion focuses on a physics homework problem involving three connected objects on a table, with specific attention to friction, tension, and acceleration. The coefficient of kinetic friction is given, and the masses are specified, prompting the need for free-body diagrams and calculations for acceleration and tension. The user derived a net force for mass m1 but expressed confusion regarding the role of friction in determining the normal force for mass m2. Additionally, there is uncertainty about the relationship between tension and friction, with a suggestion that tension may remain constant regardless of changes in the coefficient of friction. Clarification on the forces acting on each mass is requested to resolve these issues.
Plebert
Messages
3
Reaction score
0

Homework Statement


Alright, the problem is as follows:Three objects are connected on a table. The coefficient of kinetic friction between the block of mass m2 and the table is 0.350.The other two masses are hanging perpendicular to the tabletop, suspended by wires on opposite sides of the table.From left to right, the objects have masses of m1 = 4.00 kg, m2 = 1.00 kg and m3 = 2.00 kg, and the pulleys are frictionless.

(a) Draw free‐body diagrams of each of the objects. (b)
Determine the acceleration of each object and their directions. (c) Determine the
tensions in the two cords. (d) If the tabletop were smooth, would the
tensions increase, decrease or stay the same?

Homework Equations


These are the equations I've assumed to be relevant as none are given.
F=ma
F(kinetic friction)=μkf x F(n)
F(n)=m2xg
F(gravity)=mg
ƩF(m1)=((m1xg)-((μkf x(m2xg))+(m3xg)))

The Attempt at a Solution


Well, for part (a) I can't really show you my free body diagrams, but I can tell you I derived this---->ƩF(m1)=((m1xg)-((μkf x(m2xg))+(m3xg)))
from drawing the forces associated with the mass.

When all relevant values are substituted in ended up with a net force of 14.985N In the positive "down" direction. Which when rearranged into the form

a=f/m
yields, a=3.7465m/s^2

for m1

I'm finding mass 2 much harder to model, I am not sure what role friction plays in defining the normal component of the reactionary force

for part c)
I'm assuming the tension in the wires is the Ʃf(x)
which would look something like, Ʃf(x)=(m1xg) + (m3xg) ?
I've never seen a relationship linking friction and tension...

so, is the tension independent of the friction? If so,this would mean the only forces causing tension are (m1xg) + (m3xg)

For part d) If I'm right in my above assertion, the tension would remain constant regardless of changes in μkf.

I know this question shouldn't be so complicated, but I'm just having trouble getting my head around everything.

Any help is priorly appreciated.
 
Physics news on Phys.org
Plebert said:
Well, for part (a) I can't really show you my free body diagrams, but I can tell you I derived this---->ƩF(m1)=((m1xg)-((μkf x(m2xg))+(m3xg)))
from drawing the forces associated with the mass.
I don't understand how you got this from analyzing mass 1. Looks like you have forces acting on the other masses mixed in.

Start by identifying the forces acting on each mass.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top