Newton's Law of Universal Gravitation

AI Thread Summary
The discussion revolves around calculating the acceleration of a satellite in orbit using two formulas derived from Newton's Law of Universal Gravitation. The first formula, a=GMm/r^2, was incorrectly applied, leading to a significant discrepancy in results compared to the second formula, a=4pi^2r/T^2. Participants suggest using the correct form a=Gm1/r^2, where m1 is the mass of the planet, to obtain accurate results. The calculated acceleration for Venus using the corrected formula yielded a value of 2.784*10^-8, which aligns more closely with expected outcomes. This highlights the importance of using the appropriate equations in gravitational calculations.
rvnt
Messages
14
Reaction score
0

Homework Statement


I am doing a lab-"Kepler's Laws and Newton's Law of Universal Gravitation". There is an image representing various positions, at equal intervals, of a satelitte in an elliptical orbit around the earth. A list of planets and their radi and periods are given. I have calculated acceleration using two formulas a=GMm/r^2 and a=4pi^2r/T^2
Question states: "Calculate acceleration using the two equations and compare the results. Do your results confirm Newton's law of universal gravitation?"

Homework Equations




F=Gm1m2/r^2

The Attempt at a Solution


Ex. of results: accleration obtained for Venus using 1st equation= 5.5407*10^24 and using 2nd equation=0.0113286
I was expecting them to be the same...please help
 
Physics news on Phys.org
rvnt said:

Homework Statement


I am doing a lab-"Kepler's Laws and Newton's Law of Universal Gravitation". There is an image representing various positions, at equal intervals, of a satelitte in an elliptical orbit around the earth. A list of planets and their radi and periods are given. I have calculated acceleration using two formulas a=GMm/r^2 and a=4pi^2r/T^2
Question states: "Calculate acceleration using the two equations and compare the results. Do your results confirm Newton's law of universal gravitation?"

Homework Equations

F=Gm1m2/r^2

The Attempt at a Solution


Ex. of results: accleration obtained for Venus using 1st equation= 5.5407*10^24 and using 2nd equation=0.0113286
I was expecting them to be the same...please help

a=GMm/r^2 is wrong

go back to the general equation

F=Gm1m2/r^2
m1=mass of Venus
m2=mass of satellite

F=m2a=Gm1m2/r^2

a=Gm1/r^2

compare to the one you originally had (a=GMm/r^2)
 
But mass of the satellite isn't given..?
 
Wait...so as you said to use a=Gm1/r^2...for venus I got a=(6.67*10^-11)(4.8690*10^24)/(1.08*10^11)^2= 2.784*10^-8
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top