kaosAD
- 33
- 0
Hi,
Let C_1 and C_2 be nonempty convex sets and suppose C_1 \cap C_2 \neq \emptyset. I read a text that claims \textup{cl}(C_1 \cap C_2) \subset \textup{cl}(C_1) \cap \textup{cl}(C_2) since C_1 \cap C_2 \subset \textup{cl}(C_1) \cap \textup{cl}(C_2).
I am able to prove the latter, but I am not able to see the deduction made by the author. Hope someone can help me out.
Let x \in C_1 \cap C_2 \neq \emptyset, then x \in C_1 and x \in C_2. This implies x \in \textup{cl}(C_1) and x \in \textup{cl}(C_2). Hence x \in \textup{cl}(C_1) \cap \textup{cl}(C_2). So C_1 \cap C_2 \subset \textup{cl}(C_1) \cap \textup{cl}(C_2).
p/s: cl means closure
Let C_1 and C_2 be nonempty convex sets and suppose C_1 \cap C_2 \neq \emptyset. I read a text that claims \textup{cl}(C_1 \cap C_2) \subset \textup{cl}(C_1) \cap \textup{cl}(C_2) since C_1 \cap C_2 \subset \textup{cl}(C_1) \cap \textup{cl}(C_2).
I am able to prove the latter, but I am not able to see the deduction made by the author. Hope someone can help me out.
Let x \in C_1 \cap C_2 \neq \emptyset, then x \in C_1 and x \in C_2. This implies x \in \textup{cl}(C_1) and x \in \textup{cl}(C_2). Hence x \in \textup{cl}(C_1) \cap \textup{cl}(C_2). So C_1 \cap C_2 \subset \textup{cl}(C_1) \cap \textup{cl}(C_2).
p/s: cl means closure
Last edited: