Normal force in rotational motion

AI Thread Summary
The discussion revolves around the behavior of the normal force acting on a disk hinged at its rim during rotational motion. When the disk is released from a horizontal position, it experiences angular acceleration and oscillates, affecting the normal force. Initially, the normal force is less than mg due to the downward acceleration of the center of mass, but it increases as the disk rotates and reaches a maximum at the lowest point of the swing, exceeding mg. The hinge force varies in a complex manner, balancing both the radial component of gravitational force and the required centripetal force during rotation. Ultimately, the relationship between the hinge force and the normal force is influenced by the disk's angle and motion.
cavis
Messages
8
Reaction score
0
Hi there,
I've got a conceptual question about the normal force as applied to rotational motion. Suppose you have an object like a uniform disk. If the disk were set up so that its axis of rotation were about its centre of mass, it would just sit there and the normal force would be equal to +mg.

What happens if the disk is instead hinged so that its axis of rotation is at its rim (see attached image)? Here if the disk is held horizontally and then released, it'll experience an angular acceleration and start to rotate. Ultimately were it frictionless, it would oscillate back and forth.

My question is what happens to the normal force in this situation? Does it remain equal to mg since ultimately the hinge isn't accelerating? Or, does the normal force decrease since the centre of mass of the disk is accelerating downwards. Or am I totally confused?

Thanks!

Chris.
 

Attachments

  • Rotational.png
    Rotational.png
    5.3 KB · Views: 695
Physics news on Phys.org
The normal force is the force due to axis rod which supports the disk? If so,
this will be initially lower than mg, since the disk accelerates downwards. Continually, as the disk rotates and falls down, the acceleration decreases and so the normal force increases. When the disk is at its lowest position, the normal force will be at its maximum value, which is greater than mg (due to rotation of the disk).
 
Jano L. said:
The normal force is the force due to axis rod which supports the disk? If so,
this will be initially lower than mg, since the disk accelerates downwards. Continually, as the disk rotates and falls down, the acceleration decreases and so the normal force increases. When the disk is at its lowest position, the normal force will be at its maximum value, which is greater than mg (due to rotation of the disk).

Thanks, Jano. This helps. Just to clarify, if the disk we just suspended at its lowest point without rotating, the hinge force would be equal to mg? But, since it's rotating and a radially directed centripetal force is required, the hinge force must exceed mg? Do I have that correct? If I interpret your response correctly, then, the force at the hinge will have a magnitude that varies in quite a complicated manner as the disk undergoes its rotational motion?

Thanks for your help, again.

Chris.
 
cavis said:
the force at the hinge will have a magnitude that varies in quite a complicated manner as the disk undergoes its rotational motion?
Not too complicated: just the force needed to balance the radial component of the gravitational force, + centripetal force. What will make it complicated for large perturbations is the 'circular error', i.e. the extent to which it is not SHM. For small perturbations, taking the SHM approximation, the hinge force will be something like A-Bθ2.
 
Just to clarify, if the disk we just suspended at its lowest point without rotating, the hinge force would be equal to mg? But, since it's rotating and a radially directed centripetal force is required, the hinge force must exceed mg? Do I have that correct?
That's right. Exact variation can be found as a function of the angle, but probably it won't be the simplest function possible.
 
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top