Why Does the System Have a Zero Frequency in the Normal Mode Oscillations?

deadringer
Messages
32
Reaction score
0

Homework Statement


Two equal masses are connected by two massless springs of constant k and nat. length l. The masses are constrained by a frictionless tube on a pivot, (also massless) so that they remain colinear with the pivot. The pivot subtends angle theta with the vertical. The 1st mass is at distance r1 from the pivot (therefore the 1st spring has length r1) and the second mass is at r2 from the pivot.
We need to find the normal mode frequencies of oscillation about stable equil.


Homework Equations





The Attempt at a Solution


I have found the Lagrangian, equations of motion, equilibrium point and normal mode frequencies. The only problem is that I get one frequency of zero, and I don't understand physically what is going on (this is not an oscillating solution but a constant solution). This appears to imply that the system is displaced from equilibrium and just stays at the new position (i.d does not oscillate about equil. or diverge from equil.), although physically this seems not to make sense.
 
Physics news on Phys.org
I would think that the zero frequency solution is just for when there is no initial displacement.
 
The zero frequency comes from displacement of the center of mass.
In 3D you get 6 zero frequencies corresponding to 3 displacements of the C.O.M and 3 rotations about the C.O.M.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top