Normalised Energy Eigenfunction (Probability with Dirac Notation)

Unto
Messages
128
Reaction score
0

Homework Statement



Normalised energy eigenfunction for ground state of a harmonic oscillator in one dimension is:

〈x|n〉=α^(1/2)/π^(1/4) exp(-□(1/2) α^2 x^2)

n = 0

α^2=mω/h

suppose now that the oscillator is prepared in the state:

〈x|ψ〉=σ^(1/2)/π^(1/4) exp(-(1/2) σ^2 x^2)


What is the probability that a measurement of the energy gives the result E_0 = 1/2 hω?


Homework Equations





The Attempt at a Solution



I squared both states as that is the probability of the states, but I cannot see where the energy eigenvalue would fit into it.

It probably something glaringly obvious, but I haven't done this in a long time and certainly not with dirac notation. Please help.
 
Physics news on Phys.org
I squared the states to get probabilities, but now I'm left with 2 probability amplitudes that I'm stumped on how to use.

What can I use the energy for?

I know n = 0, but do I have to find the expectation value of getting the energy?
 
Apply the definition. The probability should be equal to the square modulul of some complex number, namely the scalar product of the 2 states involved. Which are the 2 states involved ?
 
Since both states are real, their conjugates equal their normal counterparts. So I end up using an Identity relation to superimpose the states anyway (underhanded trick from my QM lecturer :p ).

Ok so I'm multiplying and integrating over unity, hopefully a useful co-efficient should pop out which I should then modulus square for the probability? Will show my working a hot second.
 
How do I integrate e^[(-1/2)x^2] dx from -∞ to ∞ ?
 
It's the typical gaussian integration. You should find its value in your QM book, or statistics book. Look it up.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top