Understanding Norms: Why is f(0) = 0 Necessary?

  • Thread starter Thread starter dirk_mec1
  • Start date Start date
  • Tags Tags
    Definitions
dirk_mec1
Messages
755
Reaction score
13
Last edited by a moderator:
Physics news on Phys.org
You didn't state your definition of norm. Does you definition include ||f||>0 if f is not 0? Think of the norm of a constant function.
 
Fine. Check the 'definiteness' condition without the assumption f(0)=0.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top