Number theory - show divergence of ∑1/p for prime p

drjohnsonn
Messages
11
Reaction score
1
1. show that the sum of. The reciprocals of the primes is divergent. I am reposying this here under homework and deleting the inital improperly placed post
2. Theorem i use but don't prove because its assumed thw student has already lim a^1/n = 1.
The gist of the approach I took is that∑1/p = log(e^∑1/p) = log(∏e^1/p) and logx→ ∞ as x→∞.
Proof outline: let ∑1/p = s(x). (...SO I can write this easily on tablet) and note that e^s(x) diverges since e^1/p > 1 for any p and the infinite product where every term exceeds 1 is divergent. Then loge^s(x) diverges as logs as x→∞ would. Thus, since log(e^s(x)= s(x), the sum is found to be divergent

Homework Statement


Edit: this is wrong and i finished the proof using very little ofwhati tried here so no need to respond
 
Last edited:
Physics news on Phys.org
drjohnsonn said:
the infinite product where every term exceeds 1 is divergent.
Not so.
Any infinite sum of positive terms ∑an could be written as ln(∏ean)
 
Indeed. That whopper of an error was pointed out. Can't believe i did that but alas, excitement of an easy solution was blinding.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top