Numerical Solution to Schrodinger Equation w/ Coulomb Potential

Tertius
Messages
57
Reaction score
10
Homework Statement
I am trying to numerically solve the time-independent Schrödinger equation for the tunneling problem encountered in fusion processes (with a Coulomb barrier), specifically avoiding the use of the WKB approximation.
Relevant Equations
Schrodinger Equation
Coulomb Potential
I am doing this to have my own solution for customization and understanding. I also want to manually check the WKB approximation accuracy at various energies against this static solution.

I've split the problem into 3 regions and am solving it in 1D, but am having problems with how to define the initial boundary of Region 1.
$$r_{ctp}$$ is the classical turning point where incoming kinetic energy E equals coulomb potential V.
$$r_{nuc}$$ is the point where the nuclear strong force takes over at approximately the nuclear radius.

Region 1:
$$-\infty < x <= r_{ctp}$$
Region 1 has some of V(x) before reaching ##r_{ctp}##.
Equation:
$$-\frac{\hbar^{2}}{2m} \frac{d^{2}}{dx^{2}} \psi_I(x) +V(x)\psi_I(x)=E\psi_I(x)$$
BCs:
$$\psi_I(-100) = 0$$
$$\psi_I'(-100) = 0.0001$$ (this is nonsense, and it propagates through the solutions).
If it is set to 0, then the solution is trivially 0. But the wave function should approach 0 going to ##-\infty##.

Region 2:
$$r_{ctp} < x <= r_{nuc}$$
Region 2 has negative kinetic energy because E < V.
Equation:
$$-\frac{\hbar^{2}}{2m} \frac{d^{2}}{dx^{2}} \psi_{II}(x) +V(x)\psi_{II}(x)=E\psi_{II}(x)$$
BCs:
$$\psi_I(r_{ctp}) = \psi_{II}(r_{ctp})$$
$$\psi_I'(r_{ctp}) = \psi_{II}'(r_{ctp})$$

Region 3:
$$r_{nuc} < x <= 0$$
Region 3 is 'freely propagating' where ##V(x)=0##
Equation:
$$-\frac{\hbar^{2}}{2m} \frac{d^{2}}{dx^{2}} \psi_{III}(x) =E\psi_{III}(x)$$
BCs:
$$\psi_{II}(r_{nuc}) = \psi_{III}(r_{nuc})$$

$$\psi_{II}'(r_{nuc}) = \psi_{III}'(r_{nuc})$$

This setup is producing the attached graph using NDSolve in Mathematica.

The two questions i have are:
1) what are the appropriate BCs for Region 1?
2) why is the Region 2 solution oscillatory when it should be exponential? Usually that's a minus sign problem but wondering if there is something else going on.

Thanks
 

Attachments

  • tunneling v1.jpeg
    tunneling v1.jpeg
    21.9 KB · Views: 48
Last edited:
Physics news on Phys.org
I figured out where my approach was wrong. The boundary conditions for this are a little tricky because it is not a bound system.
So I discretized it manually and just solved $$H\psi = E\psi$$, where E is the kinetic energy of the incoming particle. E in this case is just a single eigenvalue because it is not a bound system, so it is possible to solve it as a simplified linear system as $$(H-EI)\psi = 0$$. This made it fast and give the same answer. But I did need to give the LinearSolver a small non-zero initial wave function value so it didn't give the trivial answer. Hope this helps someone.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top