O.D.E. Complementary and Particular Solution

  • Thread starter Thread starter kahless2005
  • Start date Start date
  • Tags Tags
    Particular solution
kahless2005
Messages
44
Reaction score
0
Not exactly homework, but it is a problem I'm having...

Im given an ode that reads:
y"-2y'-3y = 6;
y_c = C_1 * /exp^-x + C_2 * /exp^3x
y_p is -2

y(0) = 3
y'(0) = 11

Now I am tasked to find what C_1 and C_2 are.

I know that y(x) = y_c + y_p
so:
y = C_1 * /exp^-x + C_2 * /exp^3x - 2
and
y' = -C_1 * /exp^-x + 3 * C_2 * /exp^3x

The book defines the answers as:
C_1 = 1 and C_2 = 4

Yet when I work it out, I've gotten C_1 = 2 and C_2 = 3.

What am I doing wrong?

NOTE: I hope I did the itex right... my computer isn't showing them... :biggrin:
 
Physics news on Phys.org
Nevermind... I got it to work. I had a simple Aritmatic Error
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top