Object falling; acceleration based on x

AI Thread Summary
The discussion revolves around calculating the impact speed of a rock falling from a height of 3R above the Moon's surface, using the formula for gravitational acceleration that varies with distance. The correct approach involves recognizing that the radial distance to the Moon's surface is R, while the distance from the center of the Moon to the rock is 4R. After correcting the initial calculations, the user arrives at an impact speed of approximately 2.797 km/s, but faces issues with accuracy and significant figures. The conversation highlights the importance of understanding the difference between height and radial distance in gravitational calculations. Ultimately, the user resolves the calculation error with assistance from others in the thread.
Sheldinoh
Messages
25
Reaction score
0

Homework Statement



For a spherical celestial object of radius R, the acceleration due to gravity g at a distance x from the center of the object is g = (g0)(R^2)/(x^2), where g0 is the acceleration due to gravity at the object's surface and x > R. For the moon, take g0 = 1.63 m/s2 and R = 3200 km. If a rock is released from rest at a height of 3R above the lunar surface, with what speed does the rock impact the moon? Hint: Its acceleration is a function of position and increases as the object falls. So do not use constant acceleration free-fall equations, but go back to basics.

Homework Equations



.5(v^2-v0^2) = (g0)(R^2)(1/x-1/x0)

The Attempt at a Solution


i said that v0=0 and solved for v, x=3R x0=R, i got .899km/s. apparently that is incorrect.
 
Physics news on Phys.org
What's the difference between height and radial distance?
 
2R, so would i plug 2R in as x and 0 for x0?
 
Sheldinoh said:
2R, so would i plug 2R in as x and 0 for x0?

What's the radial distance to the surface of the Moon?

What's the radial distance to an object at height 3R above the Moon's surface?
 
What's the radial distance to the surface of the Moon?

R

What's the radial distance to an object at height 3R above the Moon's surface?

4R

I see now, i think.
so x0=4R, x=R right?
 
i got 2.797km/s is that the correct answer?
 
It looks good.
 
Does the system care if you enter the result as km/sec or m/sec?
 
  • #10
it wants the answer in km/s
 
  • #11
Is it fussy about significant figures?
 
  • #12
i got it, i think i plugged it into the calculator wrong.
 
  • #13
thanks for all the help
 
Back
Top