On length contraction (Special Relativity)

physikamateur
Messages
12
Reaction score
0

Homework Statement


Show that the length contraction deforms a sphere in motion to an oblate rotational ellipsoid whose volume decreases by a factor of γ (gamma)


Homework Equations


x=x'/γ v=4∏r^3/3 (volume for sphere) v=4∏(a^2)b/3 (volume for prolate and oblate spheroid)


The Attempt at a Solution


The question is taken from Special relativity for beginners by Jurgen Freund. Firstly, I am confused as to why the question claims that the sphere would deform into an oblate spheroid rather than a prolate spheroid since length contraction does not contract transversely. Anyway by length contraction, the radius (r) of the sphere would contract by a factor of γ, Therefore:
r=a/γ where a is the equatorial radius and b is the polar radius. By subbing r=a/γ into the formula of sphere, through some algebraic manipulation, I get a spheroid whose radius decreased by a factor of γ^3 instead. How should I go about doing it and where are my errors ?

Please help.

Thank you for viewing.
 
Physics news on Phys.org
So what happens to the sphere with the length contraction? The direction parallel to motion is contracted, and the two perpendicular to it are not, right? So which of a and b are transformed?
 
The equatorial radius (a) of the prolate spheroid would be contracted by a factor of γ. (i.e a=r/γ). Therefore the volume of the sphere is V=4∏(r^3)/3 and the volume of the prolate spheroid would be V'=4∏(r^2)b/3(γ^2). Finally, taking the volume of the sphere and divide it by the volume of the prolate spheroid gives (V/V')=r(γ^2)/b ??

Sorry if I am slow at catching ideas. Please bear with me.

Thank you very much
 
physikamateur said:
The equatorial radius (a) of the prolate spheroid would be contracted by a factor of γ. (i.e a=r/γ). Therefore the volume of the sphere is V=4∏(r^3)/3 and the volume of the prolate spheroid would be V'=4∏(r^2)b/3(γ^2). Finally, taking the volume of the sphere and divide it by the volume of the prolate spheroid gives (V/V')=r(γ^2)/b ??

Sorry if I am slow at catching ideas. Please bear with me.

Thank you very much

Watch out. It is b which is contracted whereas "a" remains equal to the initial radius.
 
physikamateur said:
The equatorial radius (a) of the prolate spheroid would be contracted by a factor of γ. (i.e a=r/γ).

Why?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top