One-Dimensional Kinematics: Height vs Time

AI Thread Summary
The discussion revolves around solving a one-dimensional kinematics problem involving height and time on the fictional planet Zoot. Participants clarify that the standard free-fall acceleration of 9.8 m/s^2 does not apply in this scenario, prompting the need to determine the local acceleration due to gravity. To find this, the equation s = 1/2 at^2 + u*t can be used, particularly focusing on the second half of the graph where initial velocity is zero. Additionally, the final velocity can be calculated using u^2 = v^2 - 2*a*s, with the first half of the graph providing the necessary values. The exchange highlights the importance of context in physics problems and the collaborative nature of problem-solving.
rdn98
Messages
39
Reaction score
0
This problem has a picture. You can view it at http://www.geocities.com/rockdog_84/One.htm

Ok. Maybe I'm missing something here, but for part one, I thought free-fall acceleration would be 9.8 m/s^2. Of course, computer didn't take it, so is there a way to find it from the graph?

As for the second part of the question, I thought initial velocity is 0, but its not the right answer. :-(
I guess another way to find initial velocity would be take the derivative of x(t) when t = 0, but I don't know the equation for this problem.

Any insight is appreciated.
 
Physics news on Phys.org
9.8 m/s^2 is the correct acceleration due to gravity on Earth, however the scenario in question takes place on the planet Zoot. If a question does not take place on Earth, then that is a big red flag that acceleration due to gravity is NOT 9.8 m/s^2.

You can figure out g by using s = 1/2 at^2 + u*t (Take the second half of the graph where u is 0).

Once you know g, you can use u^2 = v^2 - 2*a*s to find the final velocity. (Take the first half of the graph this time so v = 0)
Note: -
u = initial velocity
v = final velocity
t = time
a = acceleration
s = displacement

Claude.
 
big thanks!

Man, I would never have thought of that! Thank you so much.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top