Opamp transfer function problem

In summary, the author tries to explain how to solve an opamp problem using KCL and current summing at two nodes. He also reminds the reader that an operational amplifier circuit "operates" by forcing its inputs to be equal.
  • #1
kenok1216
58
1

Homework Statement


1.PNG

to prove vo=(2R2/R1)[1+R2/Rv][vI2-vI1] and Rv is variable resistor

Homework Equations

The Attempt at a Solution


2.PNG

upper: 2 is 0V? and then Rv,2R2 form a t-network?
bottom:3 is 0V? if not how can i calculate?[/B]
 
Physics news on Phys.org
  • #2
kenok1216 said:
upper: 2 is 0V? and then Rv,2R2 form a t-network?
No, you don't know what the current from (3) to (2) might be. So you cannot say that V(2) is zero.
bottom:3 is 0V? if not how can i calculate?
No, you cannot know V(3) without knowing both vo and vI2.

You'll need to analyze the circuit from first principles, perhaps using nodal analysis and the properties of an ideal op-amp.
 
  • #3
I think, it is a good approach to use superposition - as proposed by you (setting one of both input signals to zero).
Nevertheless, the remaining circuits are still pretty involved and - as suggested by gneill - you should use nodal analyses for both solutions.
 
  • #4
If you read this post earlier be aware it had a mistake
which is now corrected, in orange ... old jim


They teach us to solve opamp problems by resolving Zfeedback/Zinput
but when you've got two inputs like above, it's not apparent where to start.

Terminology is important - be picayune and exact with your definitions. I usually quote Lavoisier at this point but will spare you that boring lecture today.

Old JIm says:
An "Operational Amplifier" is just a piece of hardware like a LM741, usually a DC coupled amplifier with high gain
An "Operational Amplifier Circuit " is an electronic circuit , usually having an operational amplifier at its heart,
wired up so that it has a transfer function that's some mathematical operation .like add, multiply, divide, or perform some transcendental function
so we say it "operates" in a mathematical sense not just a "does it work" sense..
That's being nitpicky. But it helps me think straight.

Here are two ground rules i use for op-amp problems.
1. An "operational amplifier circuit " operates er, works by forcing the two inputs to its "operational amplifier" equal
2. It is the duty of the circuit designer to surround the "operational amplifier" with a circuit that let's it do that - if he fails , the circuit will neither "work" nor "operate" .

So let's draw your circuit and label some nodes for convenience
Let's call the voltages at nodes where Rv joins the R2's Vu(pper) and Vl(ower)
and voltages at opamp input nodes Vi(nvertng) and Vn(oninverting)
Komeck1.jpg


What do we know? What remains unknown ?
V1 and V2 are inputs, so they aren't unknowns
All resistor values are known, if only by their identifying labels

Well,
if the circuit "operates" then Vi = Vni
meaning Vi and Vni are unknown but equal,

so they count as only one unknown Let's call it Vx

Vu and Vl are unknown, so is Vo

So i see four unknowns. Vu, Vl, Vo and Vx.

Can we write four equations to solve for those four unknowns ?

KCL says we can sum currents at nodes Vu and Vl
EDIT , to fix a mistake on my drawing (Thanks Tom G ! )
node Vu: (Vx - Vu)/R2 + (Vi -Vo)/Rv - (Vu - Vo)/R2 = 0
node Vu: (Vx - Vu)/R2 + (Vl-Vu)/Rv - (Vu - Vo)/R2 = 0
node Vl: (Vx - Vl)/R2 - (Vl - Vo)/Rv - Vl/R2 = 0
node Vl: (Vx - Vl)/R2 - (Vl - Vu)/Rv - Vl/R2 = 0

Since input current to the operational amplifier at the heart of this operational amplifier circuit is zero,
Again using KCL , summing currents at nodes Vi and Vni gives
node Vi: (V1 - Vx)/R1 - (Vx - Vu)/R2 = 0
node Vni: (V2 - Vx)/R1 - (Vx - Vl)/R2 = 0

I count four equations and four unknowns... should be an algebra problem from there...
You're looking for Vo as a function of V1, V2 and the three resistor values R1 R2 and Rv.

Now - my algebra is rusty and i get absolutely frustrated trying to do it on a keyboard
so i'd do it longhand several times and see if i get same answer.

That is my "Poor Man's approach" to Opamp circuits:
Set voltage at amplifier inputs equal and solve using basic circuit analysis.

(in my case "Poor Man" meaning one like me who was endowed with a meager portion of mathematical ability)

Let me know if those four equations aren't adequate. Re-Derive them yourself.

Remember that key point - opamp must be allowed to force its inputs equal else the circuit can't "operate" .

i hope this helps you get off the ground and fly through your course. I remember when the light clicked on for me.

old jim

EDIT Tom G found my mistake , which i corrected above
...
thanks Tom


old jim
 
Last edited:
  • #5
Post #4 had a mistake in the KCL equations, now fixed..
Thanks for your interestold jim
 
  • #6
jim hardy said:
They teach us to solve opamp problems by resolving Zfeedback/Zinput
but when you've got two inputs like above, it's not apparent where to start.

Terminology is important - be picayune and

exact with your definitions. I usually quote Lavoisier at this point but will spare you that boring lecture today.Old JIm says:
An "Operational Amplifier" is just a piece of hardware like a LM741, usually a DC coupled amplifier with high gain
An "Operational Amplifier Circuit " is an electronic circuit , usually having an operational amplifier at its heart,
wired up so that it has a transfer function that's some mathematical operation .like add, multiply, divide, or perform some transcendental function
so we say it "operates" in a mathematical sense not just a "does it work" sense..
That's being nitpicky. But it helps me think straight.

Here are two ground rules i use for op-amp problems.
1. An "operational amplifier circuit " operates er, works by forcing the two inputs to its "operational amplifier" equal
2. It is the duty of the circuit designer to surround the "operational amplifier" with a circuit that let's it do that - if he fails , the circuit will neither "work" nor "operate" .

So let's draw your circuit and label some nodes for convenience
https://www.physicsforums.com/attachments/99799

What do we know? What remains unknown ?
V1 and V2 are inputs, so they aren't unknowns
All resistor values are known, if only by their identifying labels

Well,
if the circuit "operates" then Vi = Vni
meaning Vi and Vni are unknown but equal,

so they count as only one unknown Let's call it Vx
Vu and Vl are unknown, so is Vo

So i see four unknowns. Vu, Vl, Vo and Vx.

Can we write four equations to solve for those four unknowns ?

KCL says we can sum currents at nodes Vu and Vl
node Vu: (Vx - Vu)/R2 + (Vi -Vo)/Rv - (Vu - Vo)/R2 = 0
node Vl: (Vx - Vl)/R2 - (Vl - Vo)/Rv - Vl/R2 = 0

Since input current to the operational amplifier at the heart of this operational amplifier circuit is zero,
Again using KCL , summing currents at nodes Vi and Vni gives
node Vi: (V1 - Vx)/R1 - (Vx - Vu)/R2 = 0
node Vni: (V2 - Vx)/R1 - (Vx - Vl)/R2 = 0

I count four equations and four unknowns... should be an algebra problem from there...
You're looking for Vo as a function of V1, V2 and the three resistor values R1 R2 and Rv.

Now - my algebra is rusty and i get absolutely frustrated trying to do it on a keyboard
so i'd do it longhand several times and see if i get same answer.

That is my "Poor Man's approach" to Opamp circuits:(in my case "Poor Man" meaning one like me who was endowed with a meager portion of mathematical ability)

Let me know if those four equations aren't adequate. Re-Derive them yourself.

Remember that key point - opamp must be allowed to force its inputs equal else the circuit can't "operate" .

i hope this helps you get off the ground and fly through your course. I remember when the light clicked on for me.

old jim
gneill said:
No, you don't know what the current from (3) to (2) might be. So you cannot say that V(2) is zero.

No, you cannot know V(3) without knowing both vo and vI2.

You'll need to analyze the circuit from first principles, perhaps using nodal analysis and the properties of an ideal op-amp.
LvW said:
I think, it is a good approach to use superposition - as proposed by you (setting one of both input signals to zero).
Nevertheless, the remaining circuits are still pretty involved and - as suggested by gneill - you should use nodal analyses for both solutions.
jim hardy said:
Post #4 had a mistake in the KCL equations, now fixed..
Thanks for your interestold jim
thank for you teach! i will try to prove it!
 
  • #7
kenok1216 said:
thank for you teach! i will try to prove it!

If you have severe problems, give notice.
I can describe another (perhaps simpler?) method for deriving the transfer function.
 
  • Like
Likes jim hardy

1. What is an opamp transfer function?

An opamp transfer function is a mathematical representation of the relationship between the input and output voltages of an operational amplifier. It shows how the output voltage changes in response to changes in the input voltage.

2. How is the transfer function of an opamp derived?

The transfer function of an opamp is derived using the ideal opamp model, which assumes infinite input impedance, zero output impedance, and infinite open-loop gain. By applying Kirchoff's laws and using the ideal opamp model, the transfer function can be derived using basic algebraic equations.

3. What is the significance of the opamp transfer function?

The transfer function of an opamp is crucial in understanding its behavior and designing circuits that use opamps. It helps in predicting the output voltage for a given input voltage and determining the stability and frequency response of the opamp circuit.

4. How can I solve an opamp transfer function problem?

To solve an opamp transfer function problem, you need to apply the basic algebraic operations and the ideal opamp model. You also need to understand the different types of opamp circuits and their corresponding transfer functions to choose the appropriate method for solving the problem.

5. What are some common mistakes to avoid when solving opamp transfer function problems?

Some common mistakes to avoid when solving opamp transfer function problems include ignoring the ideal opamp model, not considering the input and output impedance values, and forgetting to account for the feedback resistor in the circuit. It is also essential to double-check the final transfer function equation for any errors before using it to solve the problem.

Similar threads

  • Engineering and Comp Sci Homework Help
Replies
5
Views
1K
  • Engineering and Comp Sci Homework Help
Replies
2
Views
1K
  • Engineering and Comp Sci Homework Help
Replies
2
Views
2K
  • Engineering and Comp Sci Homework Help
Replies
5
Views
1K
  • Engineering and Comp Sci Homework Help
Replies
8
Views
1K
  • MATLAB, Maple, Mathematica, LaTeX
Replies
1
Views
1K
  • Engineering and Comp Sci Homework Help
Replies
3
Views
1K
  • Engineering and Comp Sci Homework Help
Replies
18
Views
2K
  • Engineering and Comp Sci Homework Help
Replies
13
Views
2K
  • Engineering and Comp Sci Homework Help
Replies
4
Views
2K
Back
Top