Optimization Problem involving a wire

  • Thread starter Thread starter frosty8688
  • Start date Start date
  • Tags Tags
    Optimization Wire
frosty8688
Messages
126
Reaction score
0
1. A piece of wire 10 m long is cut into two pieces. One piece is bent into a square and the other is bent into an equilateral triangle. How should the wire be cut so that the total area enclosed is (a) a maximum? (b) A minimum?



2. A_{s}(x) = x^{2}, A_{t}(x)=\frac{\sqrt{3}}{4}x^{2}



3. The first equation is the length of the side of a square and the second is the length of a side of an equilateral triangle and the height of the triangle.L_{s}=\frac{x}{4}, L_{s2}=\frac{10-x}{3}, h=\frac{\sqrt{3}}{6} (10-x), A(x)=\frac{x^{2}}{16}+\frac{1}{6}(10-x)*\frac{\sqrt{3}}{6}(10-x) = \frac{x^{2}}{16}+\frac{\sqrt{3}}{36}(10-x)^{2}; A'(x)=\frac{x}{8}-\frac{\sqrt{3}}{18}(10-x); x= \frac{\frac{5\sqrt{3}}{9}}{\frac{1}{8}+\frac{\sqrt{3}}{18}}=\frac{\frac{5\sqrt{3}}{9}}{\frac{1}{4}+\frac{\sqrt{3}}{9}} How do I simplify this?
 
Physics news on Phys.org
Arithmetic is a good start. Can you find a common denominator for the denominator?
 
If I simplify it, here's how it looks, \frac{20\sqrt{3}}{9+4\sqrt{3}} and if I multiply by 2, I get\frac{40\sqrt{3}}{9+4\sqrt{3}}. Does this look right?
 
That looks OK.
 
frosty8688 said:
If I simplify it, here's how it looks, \frac{20\sqrt{3}}{9+4\sqrt{3}} and if I multiply by 2, I get\frac{40\sqrt{3}}{9+4\sqrt{3}}. Does this look right?
You can simplify that a bit more. Do you know a trick for getting rid of terms like a+√b from denominators?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top