Optimizing Force of Solenoid w/Dia. ≤ 15mm

AI Thread Summary
The discussion focuses on optimizing the force produced by a solenoid with a diameter of 15mm or less, emphasizing the balance between the number of wire wraps, wire gauge, and the internal radius. The user seeks to understand the relationship between these variables and how they affect the solenoid's force output, referencing an online calculator for approximations. Key considerations include the impact of wire gauge on resistance and current, which in turn influences the magnetic field strength. An example comparing two solenoids illustrates that thicker wires can lead to higher current and stronger magnetic fields. The user invites community input on the optimal ratios for achieving maximum force.
Alex Sieber
Messages
1
Reaction score
0
First time posting here so excuse me if I don't know the rules so well. I figured this would be the best place to post this question.

I'm trying to optimize the force produced by a solenoid that is no bigger than 15mm in diameter (D). My goal is to get just the right balance of number of wire wraps (N), gauge of wire (G) and radius of the area inside the solenoid (R). I found an equation online that expresses the force of a solenoid on a piece of metal here:

http://www.daycounter.com/Calculators/Magnets/Solenoid-Force-Calculator.phtml

however I believe this is just an approximation under extreme circumstances. Using the variables previously expressed I have that D = R + Nd, where d is the diameter of the gauge of wire I'm to use. I know that the force is proportional to the number of wraps (N) and the current (i), however I also am under the impression that the resistance, and therefore the current, depends on the length and area of the wire. Does anyone know the proper ratio of open radius (R), to number of wraps (N), to gauge of wire (G) that would produce the largest force? I have a bunch of derivations using the equation from the aforementioned link and would be happy to provide my conclusions, however I would like to receive your guys' input before laying it all out. Thank you for any assistance you can provide and I'm happy to become to a part of the community here!

If my point isn't clear here's an example:

Solenoid 1: Has open radius of R=3.6mm inside the solenoid, a wire gauge of G=16 and N=3 wraps per unit length.
Solenoid 2: Has open radius of R=5mm inside the solenoid, a wire gauge of G=19 and N=3 wraps per unit length.

Does solenoid 1 or 2 exert a larger force on a piece of metal, say, 20mm, away from the end of the solenoid?
 
Last edited:
Based on your question, if you apply the same voltage, solenoid 1, having thicker wires and hence lower resistance, will have more current flowing, and hence will have a stronger magnetic field, and hence the greater force.

More current you push more powerful it gets. Do you have a limit on current, power or the available voltage ?

Thanks.
 
Thread 'Weird near-field phenomenon I get in my EM simulation'
I recently made a basic simulation of wire antennas and I am not sure if the near field in my simulation is modeled correctly. One of the things that worry me is the fact that sometimes I see in my simulation "movements" in the near field that seems to be faster than the speed of wave propagation I defined (the speed of light in the simulation). Specifically I see "nodes" of low amplitude in the E field that are quickly "emitted" from the antenna and then slow down as they approach the far...
Hello dear reader, a brief introduction: Some 4 years ago someone started developing health related issues, apparently due to exposure to RF & ELF related frequencies and/or fields (Magnetic). This is currently becoming known as EHS. (Electromagnetic hypersensitivity is a claimed sensitivity to electromagnetic fields, to which adverse symptoms are attributed.) She experiences a deep burning sensation throughout her entire body, leaving her in pain and exhausted after a pulse has occurred...
Back
Top