Hi:(adsbygoogle = window.adsbygoogle || []).push({});

I am trying to show that if we have a diffeomorphism f:M-->N and C is

a positively-oriented Jordan curve in M ( so that., the winding number of C about any

point in its interior is 1 ) , then f(C) is also positively-oriented in the same sense.

It seems like something obvious to do is to use the fact that if F : M-->N is a diffeo.

then F_* T_pM and T_pF(M) is a V.Space isomorphism. I imagine we can consider the

curve (since it is a Jordan curve, I think reasonably-nice ) as embedded in M , and

then we can see the tangent space of the curve as a subspace of T_pM , and so we

have a vector space isomorphism G* T_qM -->T_F(q)M for q in the curve.

Now, I think we can describe that a curve is positively-oriented by using a V.Field

(which points towards the interior of C at each point, so that if we are walking along the

curve, the interior will be to our left) , and the diffeo. inducing a V.Space isomorphism,

at each point, should preserve this property, but I don't see how to make this more

precise; I don't even know how to define a V.Field that describes positive orientation.

Thanks For Any Ideas.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Orientations of curves and diffeomorphism

**Physics Forums | Science Articles, Homework Help, Discussion**