Original function with inverse

  • Thread starter Thread starter MathewsMD
  • Start date Start date
  • Tags Tags
    Function Inverse
MathewsMD
Messages
430
Reaction score
7

Homework Statement



Can an inverse function be determined as either even or odd simply given its original function?
 
Physics news on Phys.org
MathewsMD said:

Homework Statement



Can an inverse function be determined as either even or odd simply given its original function?

Claim 1: If ##f## is even, then ##f## is not invertible.

Claim 2: If ##f## is odd and invertible, then ##f^{-1}## is odd.

The proofs are left as exercises for the reader.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top