Orthonormal Sets - Find a projection matrix - Linear Algebra

aargoo
Messages
3
Reaction score
0

Homework Statement


Let A be the 4x2 matrix
|1/2 -1/2|
|1/2 -1/2|
|1/2 1/2|
|1/2 1/2|

Find the projection matrix P that projects vectors in R4 onto R(A)

Homework Equations


projSx = (x * u)u where S is a vector subspace and x is a vector

The Attempt at a Solution


v1 = (1/2, 1/2, 1/2, 1/2)T
v2 = (-1/2, -1/2, 1/2, 1/2)T
v1v2 = 0, hence the vectors are orthogonal
||v1|| = 1
||v2|| = 1, hence they form an orthonormal basis for R2

R(A) = span{(1/2, -1/2)T, (1/2, -1/2)T, (1/2, 1/2)T, (1/2, 1/2)T} = span{(1/2, -1/2)T, (1/2, 1/2)T}

And from here I am a bit lost. Would I define x as the standard basis for R4 and find projR(A)x ?

The answer from the book is given as
[.5 -.5 0 0]
[-.5 .5 0 0]
[0 0 .5 -.5]
[0 0 -.5 .5]

Thanks

Note: This is from a section before the Gram-Schmidt orthogonalization process
 
Last edited:
Physics news on Phys.org
The first thing I would do is determine R(A). Given any vector v= [x, y], we have
Av= \begin{bmatrix}\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{bmatrix}\begin{bmatrix}x \\ y \end{bmatrix}= \begin{bmatrix}\frac{1}{2}x- \frac{1}{2}y \\ \frac{1}{2}x- \frac{1}{2}y \\ \frac{1}{2}x+ \frac{1}{2}y \\ \frac{1}{2}x+ \frac{1}{2}y\end{bmatrix}.

We can write that result as
\begin{bmatrix}a \\ a \\ b \\ b\end{bmatrix}= \begin{bmatrix}a \\ a \\ 0 \\ 0 \end{bmatrix}+ \begin{bmatrix}0 \\ 0 \\ b \\ b \end{bmatrix}= a\begin{bmatrix}1 \\ 1 \\ 0 \\ 0 \end{bmatrix}+ b\begin{bmatrix}0 \\ 0 \\ 1 \\ 1 \end{bmatrix}
where a= x/2+ y/2 and b= x/2- y/2. That is, a basis for R(A) is \{\begin{bmatrix}1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1\end{bmatrix}\}.
 
Hmm, I'm still trying to figure out if I'm missing a formula somewhere...
A =
[1 0
1 0
0 1
0 1]

So, projAx = AATx
=
[1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1] x

I'm now confused as to how to find x? It should be a 4x4, correct?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top