Oscillatory Motion - Determining equation of motion

AI Thread Summary
The discussion centers on determining the equation of motion for a particle attached to a spring, with specific parameters including mass, force constant, and initial conditions. Participants are trying to solve for the phase constant, phi, using the maximum speed and position at time t=0, but are encountering discrepancies in their results. Suggestions include simplifying the velocity function to a cosine form to eliminate the need for phi, making calculations easier. The conversation also highlights the importance of understanding the relationship between potential and kinetic energy in oscillatory motion. Overall, the thread emphasizes the challenges of applying concepts of oscillatory motion in practical problems.
menglish20
Messages
6
Reaction score
0

Homework Statement



A particle with a mass of 0.5 kg is attached to a horizontal spring with a force constant of 50 N/m. At the moment t = 0, the particle has a maximum speed of 20 m/s and is moving to the left.
(a) Determine the particle's equation of motion.
(b) Where in the motion is the potential energy three times the kinetic energy?
(c) Find the minimum time interval required for the particle to move from x=0 to x=1.00m.
(d) Find the length of a simple pendulum with the same period.


Homework Equations


(a)
w=sqrt(k/m)

v_max = Aw

(b)
3(.5*m*w^2*A^2*sin^2(wt+phi))= .5*k*A^2*cos^2(wt+phi)


The Attempt at a Solution



I searched he forums here for the same question and found this thread:
https://www.physicsforums.com/archive/index.php/t-231270.html

I think I understand how to find omega and the maximum velocity (though the signs may be incorrect), but I don't understand how to solve for phi. The only thing I could think of was to set

v=-wAsin(wt+phi) to -20=10*(-2)sin(phi) for t=0.
This returned a phi=3pi/2 or -pi/2, unless I'm doing something wrong.
I also tried to set x(0)=0, so
0=(-2)cos(phi) which results in phi=pi/2.
These answers disagree with what the linked thread found for phi and what my professor's answer had for phi.

I'm just having a hard time understand phi, which seems like such a simple concept. If anyone could steer me in the right direction, I think I could finish this problem. Thanks for any help!
 
Physics news on Phys.org
v=-wAsin(wt+phi) to -20=10*(-2)sin(phi) for t=0.

If -20=10*(-2)sin(phi), then sin(phi)=1, so phi can be pi/2. This is consistent with what you got using x(0)=0.
 
Just a thought: if the speed is maximum as the particle passes through the equilibrium point at t=0, why not make the velocity function a cosine and do away with the phase constant? Integrate once to find the position function (which will then be a sine function, again with no phase constant). Should make life easier.
 
If you're going to do more with oscillators (or waves) I recommend purchasing A. P. French's Vibrations and Waves It's inexpensive -- likely free down-loadable -- there are MIT lectures based on it.

bc
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top