Othogonal complement of a span

  • Thread starter Thread starter jOc3
  • Start date Start date
  • Tags Tags
    Span
jOc3
Messages
6
Reaction score
0

Homework Statement


Show that <S>^{\bot}=S^{\bot}

Homework Equations





The Attempt at a Solution


I manage to show S^{\bot}\subseteq<S>^{\bot}.
What about the other way round? Any way of proving without using the concept of basis?
 
Last edited:
Physics news on Phys.org
You need to prove that span(S)^{\bot} is a subset of S^{\bot}. However, you know that S \subseteq span(S). So, given the latter, try to prove the former.
 
Last edited:
This is what I come out with:

Let y\in<S>^{\bot}, then <y,w>=0, for all w\in<S>.
But S\subseteq<S>.
Hence for y\in<S>^{\bot}, then <y,w>=0, for all w\inS.
Hence y\inS^{\bot}.
Hence <S>^{\bot}\subseteqS^{\bot}.

Is it correct? Or should I say "for some w"?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top