Doofy
- 71
- 0
Just a quick question about notation really here. In neutrino oscillation we can calculate a probability of an oscillation occurring between two flavour eigenstates - invariably denoted P(\nu_{\alpha} \rightarrow \nu_{\beta}). I've got some confusion about what happens to this when we apply operators for P, CP and CPT.
Charge conjugation turns particles to anti-particles, so I'm thinking this transformation would be denoted P(\nu_{\alpha} \rightarrow \nu_{\beta}) \rightarrow P(\overline{\nu_{\alpha}} \rightarrow \overline{\nu_{\beta}})
Time reversal would presumably be P(\nu_{\alpha} \rightarrow \nu_{\beta}) \rightarrow P(\nu_{\beta} \rightarrow \nu_{\alpha})
The combination of C and T operations would therefore be P(\nu_{\alpha} \rightarrow \nu_{\beta}) \rightarrow P(\overline{\nu_{\beta}} \rightarrow \overline{\nu_{\alpha}})
My question is how would the parity transformation be incorporated here?
ie. how would one write \hat{P} P(\nu_{\alpha} \rightarrow \nu_{\beta}), \hat{C}\hat{P} P(\nu_{\alpha} \rightarrow \nu_{\beta}) and \hat{C}\hat{P}\hat{T} P(\nu_{\alpha} \rightarrow \nu_{\beta}) ?
Charge conjugation turns particles to anti-particles, so I'm thinking this transformation would be denoted P(\nu_{\alpha} \rightarrow \nu_{\beta}) \rightarrow P(\overline{\nu_{\alpha}} \rightarrow \overline{\nu_{\beta}})
Time reversal would presumably be P(\nu_{\alpha} \rightarrow \nu_{\beta}) \rightarrow P(\nu_{\beta} \rightarrow \nu_{\alpha})
The combination of C and T operations would therefore be P(\nu_{\alpha} \rightarrow \nu_{\beta}) \rightarrow P(\overline{\nu_{\beta}} \rightarrow \overline{\nu_{\alpha}})
My question is how would the parity transformation be incorporated here?
ie. how would one write \hat{P} P(\nu_{\alpha} \rightarrow \nu_{\beta}), \hat{C}\hat{P} P(\nu_{\alpha} \rightarrow \nu_{\beta}) and \hat{C}\hat{P}\hat{T} P(\nu_{\alpha} \rightarrow \nu_{\beta}) ?