Parametric equation of the intersection between surfaces

BilalX
Messages
7
Reaction score
0
[SOLVED] Parametric equation of the intersection between surfaces

Homework Statement



Given the following surfaces:
S: z = x^2 + y^2
T: z = 1 - y^2

Find a parametric equation of the curve representing the intersection of S and T.

Homework Equations



N/A

The Attempt at a Solution



The intersection will be:
x^2 + y^2 = 1 - y^2
x = (1 - 2y^2)^0.5

At this point, I plug in the following parametrization:
y = sin(t)

Which yields:

x = (1 - 2(sin(t))^2)^0.5
y = sin(t)
z = 1-(sin(t))^2 (from the equation for T)

with t = 0..2*Pi.

Judging from a Maple plot this seems to make sense; the curve is a projected ellipse, but due to the x term I have to split it into two separate segments. I'm pretty sure I should be able to use a more elegant solution with a single curve, but I haven't been able to figure it out - any help would be welcome.

Thanks-
 
Physics news on Phys.org
In a situation like that it is better not to solve for one of the variables.

Instead, change x2+ y2= 1- y2 to x2+ 2y2= 1, the equation of an ellipse. Then use the "standard" parameterization of an ellipse: x= cos(t), y= sin(t)/\sqrt{2}. Then, of course, you can have either z= cos^2(t)+ (1/2)sin^2(t) or z= 1- (1/2)sin^2(t).
 
Great, thank you.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top