B Parametric Equations- Ball travel

AI Thread Summary
The discussion centers on the trajectory of a baseball hit from an initial height of 3 feet at a speed of 100 miles per hour and an angle of 20°. It addresses the confusion regarding the height values in parametric equations, specifically when the y-value reaches zero. The participants clarify that if the origin is set at 3 feet, then a y-value of -3 feet corresponds to ground level. The trajectory will show the ball returning to the height of 3 feet before hitting the ground, which is represented as y = -3 in the equations. Understanding the coordinate system's origin is crucial for accurately interpreting the height of the ball throughout its flight.
opus
Gold Member
Messages
717
Reaction score
131
Suppose a baseball is hit 3 feet above the ground, and that it leaves the bat at a speed of 100 miles an hour at an angle of 20° from the horizontal.

I've got the parametric equations in terms of x and in terms of y, and I have values plotted and a graph sketched. My question is in regards to the initial height of 3 ft, and the position of the ball when it hits the ground. Now in looking at the table of these values, the y value (corresponding to height) is equal to zero at some point in time. Now if one were to look at the table of values, and see that the height is equal to zero feet at some point, is it true that this is not actually 0 ft, since we started from 3 feet? And if we wanted to find out when the ball hit the ground, we'd need to find when the ball was at -3 feet?
 
Mathematics news on Phys.org
opus said:
Suppose a baseball is hit 3 feet above the ground, and that it leaves the bat at a speed of 100 miles an hour at an angle of 20° from the horizontal.

I've got the parametric equations in terms of x and in terms of y, and I have values plotted and a graph sketched. My question is in regards to the initial height of 3 ft, and the position of the ball when it hits the ground. Now in looking at the table of these values, the y value (corresponding to height) is equal to zero at some point in time. Now if one were to look at the table of values, and see that the height is equal to zero feet at some point, is it true that this is not actually 0 ft, since we started from 3 feet? And if we wanted to find out when the ball hit the ground, we'd need to find when the ball was at -3 feet?
This all depends on where you selected the origin of the coordinate system (height, width). The resulting parabola is the same, but the equations are different. Theoretically you can also set the origin at 2 ft height and end up with -1 ft, or at even more strange places, e.g. on the score board. However, the feet or the bat of the batter is somehow a natural gauge.
 
Last edited:
  • Like
Likes opus
So in this attached image, you can see that we're starting from 3 ft above ground. So as soon as the batter hits the ball, the ball will go through a trajectory path. On it's way back down, it will eventually hit 3 feet above ground level. In terms of the table of values, this would be a height of 0. However, this is clearly not the ground as we started from 3 ft. So, by the table of values, y=-3 is equal to ground level?
 

Attachments

  • Screen Shot 2018-07-08 at 10.49.13 PM.png
    Screen Shot 2018-07-08 at 10.49.13 PM.png
    12.7 KB · Views: 758
opus said:
So in this attached image, you can see that we're starting from 3 ft above ground. So as soon as the batter hits the ball, the ball will go through a trajectory path. On it's way back down, it will eventually hit 3 feet above ground level. In terms of the table of values, this would be a height of 0. However, this is clearly not the ground as we started from 3 ft. So, by the table of values, y=-3 is equal to ground level?
Yes. If your horizontal axis (the x-axis) is 3' above ground level, then y = -3 is at ground level.
 
  • Like
Likes opus
Thank you both!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
36
Views
7K
Replies
5
Views
3K
Replies
1
Views
2K
Replies
38
Views
4K
Replies
3
Views
3K
Replies
1
Views
2K
Replies
64
Views
3K
Replies
4
Views
2K
Replies
25
Views
6K
Back
Top