Part of Plane 3x+2y+z=6 in First Octant

  • Thread starter Thread starter rocomath
  • Start date Start date
  • Tags Tags
    Plane
rocomath
Messages
1,752
Reaction score
1
The part of the plane 3x+2y+z=6 that lies in the first octant.

A(s)=\int_0^2\int_0^3\sqrt{14}dydy

Are my limits not correct? B/c my answer is just off by a little.

me: 6\sqr(t14), answer: 3\sqrt(14)
 
Physics news on Phys.org
No, not correct. The domain of integration is a triangle in the x-y plane, not a rectangle. So the y limits should depend on x (or vice versa).
 
Dick said:
No, not correct. The domain of integration is a triangle in the x-y plane, not a rectangle. So the y limits should depend on x (or vice versa).
dope! Gotcha, thanks.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top