Partial derivatives of level curves

Calpalned
Messages
297
Reaction score
6

Homework Statement


Let ##C## be a level curve of ##f## parametrized by t, so that C is given by ## x=u(t) ## and ##y = v(t)##
Let ##w(t) = g(f(u(t), v(t))) ##
Find the value of ##\frac{dw}{dt}##

Homework Equations


Level curves
Level sets
Topographic maps

The Attempt at a Solution


Is it true that the answer to a level curve question is always zero? My teacher went over this but I couldn't understand him.
 
Physics news on Phys.org
What does it mean to be on a level curve? What value will f put out for any changes in t? How does the g or w function change corresponding to f's change.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top