Partial Differential Equation: Can f(u) Satisfy the Equation dz/dx - dz/dy = 0?

jenuine
Messages
5
Reaction score
0
Consider the partial differential equation 2dz/dx-dz/dy=0
Show that if f(u) is a differential function of one variable, then the partial differential equation is satisfied by z=f(x+2y)




3. The Attempt at a Solution : Change of variables? No idea :S
 
Physics news on Phys.org
Here's a suggestion: DO WHAT IT SAYS! If z= f(x+ 2y), what is \partial f/\partial x? What is \partial f/\partial y? Let u= x+2y and use the chain rule.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top