Partial Fraction Decomposition

ns5032
Messages
27
Reaction score
0

Homework Statement


I am just trying to do partial fraction decomposition on an equation. I'm not too good with it, as far as knowing if I need just A or Ax+B, etc.

[e^(-2s) / (s^2+1)(s-1)(s+1)^2]

Homework Equations



The Attempt at a Solution



I'm not quite sure how to work with the e^-2s, but as far as doing the partial fractions, is this right: ?

Ax+B/(s^2+1) + C/(s-1) + D/(s+1) + E/(s+1)

I really just need help with that first step, making sure I set it up right, and also on how to deal with the e^(-2s). Do I take it out and treat it as 1? Do I set what I get from the partial fraction decomposition equal to e^(-2s) or something else??

Thanks!
 
Physics news on Phys.org
ns5032 said:

Homework Statement


I am just trying to do partial fraction decomposition on an equation. I'm not too good with it, as far as knowing if I need just A or Ax+B, etc.

[e^(-2s) / (s^2+1)(s-1)(s+1)^2]

Homework Equations



The Attempt at a Solution



I'm not quite sure how to work with the e^-2s, but as far as doing the partial fractions, is this right: ?

Ax+B/(s^2+1) + C/(s-1) + D/(s+1) + E/(s+1)
The last one should be E/(s+1)^2.

I really just need help with that first step, making sure I set it up right, and also on how to deal with the e^(-2s). Do I take it out and treat it as 1? Do I set what I get from the partial fraction decomposition equal to e^(-2s) or something else??

Thanks!
No, you do not treat e^(-2s) as 1- it isn't!
You write
\frac{e^{-2s}}{(s^2+1)(s-1)(s+1)^2}= \frac{As+B}{s^2+1}+ \frac{C}{s-1}+ \frac{D}{s+1}+ E/(s+1)^2[/itex] <br /> for <b>all</b> x and solve for A, B, C, D, E.<br /> <br /> Probably the simplest way is to multiply both sides by (s^2+ 1)(s- 1)(s+1)^2 to get rid of the fractions, then take s equal to whatever 5 numbers you wish so you get 5 equations to solve.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top