Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

PDE - Fourier Method

  1. Feb 15, 2009 #1
    1. The problem statement, all variables and given/known data
    Obtain all solutions of the equation partial ^2 u/partial x^2 - partial u/partial y = u of the form u(x,y)=(A cos alpha x + B sin alphax)f(y) where A, B and alpha are constants. Find a solution of the equation for which u=0 when x=0; u=0 when x = pi, u=x when y=1.

    2. Relevant equations The solution is u = -2 summuation from n=1 to infinity (((-1)^n)/n)e^((1+n)(1-y)) sin nx.

    3. The attempt at a solution
    I believe the next step is to use u(x,Y) = X(x)Y(y) so the equation then becomes (1/x) partial ^2 X/partial x^2 - (1/y)partial Y/partial y = u. Then I get lost, can I get some help on how I would solve this problem?
  2. jcsd
  3. Feb 16, 2009 #2

    Tom Mattson

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    No, you forgot to divide the right hand side by u. You should have gotten the following:


    Since the first term on the left side depends only on x and the second depends only on y, and since they differ by a constant (namely 1), try setting [itex]X''/X=-\alpha^2[/itex] and [itex]Y'/Y=-\alpha^2-1[/itex]. That way you get the desired form of the solution and when you subtract them you get 1.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook