PDE Separation of Variables: Solving utt = uxx with Boundary Conditions

Click For Summary
SUMMARY

The discussion focuses on solving the partial differential equation (PDE) utt = uxx with boundary conditions u(0,t) = 0, u(1,t) = 1, initial conditions u(x,0) = x, and ut(x,0) = x(1-x). The solution approach involves separation of variables, leading to the equations T''(t) = λT(t) and X''(x) = λX(x). The analysis reveals that for λ = 0, the solution is linear, while for λ > 0 and λ < 0, the solutions involve hyperbolic and trigonometric functions, respectively. The final solution requires fitting the initial conditions using a Fourier series expansion.

PREREQUISITES
  • Understanding of partial differential equations (PDEs)
  • Familiarity with separation of variables technique
  • Knowledge of boundary value problems
  • Basic concepts of Fourier series
NEXT STEPS
  • Study the method of separation of variables in depth
  • Learn about Fourier series and their application in solving PDEs
  • Explore boundary value problems and their solutions
  • Investigate the implications of initial value conditions on PDE solutions
USEFUL FOR

Mathematics students, educators, and researchers focusing on differential equations, particularly those interested in solving boundary value problems and understanding the application of Fourier series in PDEs.

walter9459
Messages
20
Reaction score
0

Homework Statement


Solve the problem.
utt = uxx 0 < x < 1, t > 0
u(x,0) = x, ut(x,0) = x(1-x), u(0,t) = 0, u(1,t) = 1


Homework Equations





The Attempt at a Solution


Here is what I have so far but I'm not sure if I am on the right path or not.

u(x,t) = X(x)T(t)
ut(x,t) = X(x)T'(t) ux(x,t) = X'(x)T(t)
utt(x,t) = X(x)T"(t) uxx(x,t) = X"(x)T(t)
X(x)T"(t) = X"(x)T(t)
T"(t)/T(T) = X"(x)/X(x) = λ
T"(t) = λT(t) X"(x) = λX(x)

λ = 0 -----> X(x) = Ax + B
b.c. u(0,t) = A(0) + B = 0 --------> B = 0
u(1,t) = A(1) + B = 1 --------> A = 1

λ > 0 --------> λ = ω2
X(x) = Acosh ωx + Bsinh ωx
X(0) = Acosh ω(0) + Bsinh ω(0) = 0
= Bsinh ω(0) = 0 ------> B = 0

λ < 0 ---------> λ = -ω2
X"(x) = λX(x) --------> X"(x) = -ω2X(x)
X(x) = Acosωx + Bsinωx
X(0) = Acosω(0) + Bsinω(0) = 0 --------> A = 0
X(1) = Acosω(1) + Bsinω(1) = 1
X(1) = Bsinω = 1 B ≠ 0
ω = ∏/2 + 2m∏ for any interger m

T"(t) = ω2T(t)
T"(t) = C cosωt + Dsinωt

u = (C cosωt + Dsinωt)sinux

Okay this is all I have. Am I on the right path and where do I go from here?
Thanks!
 
Physics news on Phys.org
walter9459 said:

Homework Statement


Solve the problem.
utt = uxx 0 < x < 1, t > 0
u(x,0) = x, ut(x,0) = x(1-x), u(0,t) = 0, u(1,t) = 1


Homework Equations





The Attempt at a Solution


Here is what I have so far but I'm not sure if I am on the right path or not.

u(x,t) = X(x)T(t)
ut(x,t) = X(x)T'(t) ux(x,t) = X'(x)T(t)
utt(x,t) = X(x)T"(t) uxx(x,t) = X"(x)T(t)
X(x)T"(t) = X"(x)T(t)
T"(t)/T(T) = X"(x)/X(x) = λ
T"(t) = λT(t) X"(x) = λX(x)

λ = 0 -----> X(x) = Ax + B
b.c. u(0,t) = A(0) + B = 0 --------> B = 0
u(1,t) = A(1) + B = 1 --------> A = 1

λ > 0 --------> λ = ω2
X(x) = Acosh ωx + Bsinh ωx
X(0) = Acosh ω(0) + Bsinh ω(0) = 0
= Bsinh ω(0) = 0 ------> B = 0

λ < 0 ---------> λ = -ω2
X"(x) = λX(x) --------> X"(x) = -ω2X(x)
X(x) = Acosωx + Bsinωx
X(0) = Acosω(0) + Bsinω(0) = 0 --------> A = 0
X(1) = Acosω(1) + Bsinω(1) = 1
X(1) = Bsinω = 1 B ≠ 0
ω = ∏/2 + 2m∏ for any interger m

T"(t) = ω2T(t)
T"(t) = C cosωt + Dsinωt

u = (C cosωt + Dsinωt)sinux

Okay this is all I have. Am I on the right path and where do I go from here?
Thanks!
Other than the fact that you mean "sin ωx", not "sin ux", that's good. Now you have to try to make that fit the "initial vaue conditions", u(x,0)= 0 and u_t(x, 0)= x(1- x).

You won't be able to do that with just a single "ω" so since this is a linear equation try, instead, a sum:
u(x,t)= \sum_{m=0}^\infty (cos(\pi/2 + 2m\pi)t + Dsin(\pi/2 + 2m\pi)t)sin(\pi/2 + 2\pi)x
 
Sorry to be so dense, but I get lost at this point.

I think I am then suppose to do

ut=X(x)[-C(∏/2 + 2m∏)sin(∏/2 + 2m∏)t + D(∏/2 + 2m∏)cos(∏/2 + 2m∏)t)
ut(x,0) = D(∏/2 + 2m∏)cos(∏/2 + 2m∏) = x(1-x) ----> D ≠ 0

t = 0 f(x) = ∑ Dsin (∏/2 + 2m∏)t

u(x,t) = ∑ D sin ((∏/2 + 2m∏)t sin (∏/2 + 2m∏)x

Am I on the doing this correctly? Do I then do the integral from 0 to m∏?

Thanks!
 

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
8
Views
4K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 5 ·
Replies
5
Views
4K
Replies
1
Views
1K