PDE Separation of Variables: Solving utt = uxx with Boundary Conditions

walter9459
Messages
20
Reaction score
0

Homework Statement


Solve the problem.
utt = uxx 0 < x < 1, t > 0
u(x,0) = x, ut(x,0) = x(1-x), u(0,t) = 0, u(1,t) = 1


Homework Equations





The Attempt at a Solution


Here is what I have so far but I'm not sure if I am on the right path or not.

u(x,t) = X(x)T(t)
ut(x,t) = X(x)T'(t) ux(x,t) = X'(x)T(t)
utt(x,t) = X(x)T"(t) uxx(x,t) = X"(x)T(t)
X(x)T"(t) = X"(x)T(t)
T"(t)/T(T) = X"(x)/X(x) = λ
T"(t) = λT(t) X"(x) = λX(x)

λ = 0 -----> X(x) = Ax + B
b.c. u(0,t) = A(0) + B = 0 --------> B = 0
u(1,t) = A(1) + B = 1 --------> A = 1

λ > 0 --------> λ = ω2
X(x) = Acosh ωx + Bsinh ωx
X(0) = Acosh ω(0) + Bsinh ω(0) = 0
= Bsinh ω(0) = 0 ------> B = 0

λ < 0 ---------> λ = -ω2
X"(x) = λX(x) --------> X"(x) = -ω2X(x)
X(x) = Acosωx + Bsinωx
X(0) = Acosω(0) + Bsinω(0) = 0 --------> A = 0
X(1) = Acosω(1) + Bsinω(1) = 1
X(1) = Bsinω = 1 B ≠ 0
ω = ∏/2 + 2m∏ for any interger m

T"(t) = ω2T(t)
T"(t) = C cosωt + Dsinωt

u = (C cosωt + Dsinωt)sinux

Okay this is all I have. Am I on the right path and where do I go from here?
Thanks!
 
Physics news on Phys.org
walter9459 said:

Homework Statement


Solve the problem.
utt = uxx 0 < x < 1, t > 0
u(x,0) = x, ut(x,0) = x(1-x), u(0,t) = 0, u(1,t) = 1


Homework Equations





The Attempt at a Solution


Here is what I have so far but I'm not sure if I am on the right path or not.

u(x,t) = X(x)T(t)
ut(x,t) = X(x)T'(t) ux(x,t) = X'(x)T(t)
utt(x,t) = X(x)T"(t) uxx(x,t) = X"(x)T(t)
X(x)T"(t) = X"(x)T(t)
T"(t)/T(T) = X"(x)/X(x) = λ
T"(t) = λT(t) X"(x) = λX(x)

λ = 0 -----> X(x) = Ax + B
b.c. u(0,t) = A(0) + B = 0 --------> B = 0
u(1,t) = A(1) + B = 1 --------> A = 1

λ > 0 --------> λ = ω2
X(x) = Acosh ωx + Bsinh ωx
X(0) = Acosh ω(0) + Bsinh ω(0) = 0
= Bsinh ω(0) = 0 ------> B = 0

λ < 0 ---------> λ = -ω2
X"(x) = λX(x) --------> X"(x) = -ω2X(x)
X(x) = Acosωx + Bsinωx
X(0) = Acosω(0) + Bsinω(0) = 0 --------> A = 0
X(1) = Acosω(1) + Bsinω(1) = 1
X(1) = Bsinω = 1 B ≠ 0
ω = ∏/2 + 2m∏ for any interger m

T"(t) = ω2T(t)
T"(t) = C cosωt + Dsinωt

u = (C cosωt + Dsinωt)sinux

Okay this is all I have. Am I on the right path and where do I go from here?
Thanks!
Other than the fact that you mean "sin ωx", not "sin ux", that's good. Now you have to try to make that fit the "initial vaue conditions", u(x,0)= 0 and u_t(x, 0)= x(1- x).

You won't be able to do that with just a single "ω" so since this is a linear equation try, instead, a sum:
u(x,t)= \sum_{m=0}^\infty (cos(\pi/2 + 2m\pi)t + Dsin(\pi/2 + 2m\pi)t)sin(\pi/2 + 2\pi)x
 
Sorry to be so dense, but I get lost at this point.

I think I am then suppose to do

ut=X(x)[-C(∏/2 + 2m∏)sin(∏/2 + 2m∏)t + D(∏/2 + 2m∏)cos(∏/2 + 2m∏)t)
ut(x,0) = D(∏/2 + 2m∏)cos(∏/2 + 2m∏) = x(1-x) ----> D ≠ 0

t = 0 f(x) = ∑ Dsin (∏/2 + 2m∏)t

u(x,t) = ∑ D sin ((∏/2 + 2m∏)t sin (∏/2 + 2m∏)x

Am I on the doing this correctly? Do I then do the integral from 0 to m∏?

Thanks!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top