Pendulum SHO but with extra downward acceleration of the pivot

AI Thread Summary
The discussion focuses on understanding the dynamics of a pendulum in a non-standard gravitational environment, specifically when the pivot accelerates downwards. Participants explore how to intuitively grasp the effects of this additional acceleration on the pendulum's motion and period. It is noted that the net acceleration acting on the pendulum's center of mass changes based on the direction of the elevator's acceleration relative to gravity. When the elevator accelerates upwards, the pendulum feels heavier, while downward acceleration makes it feel lighter. This leads to confusion about the role of gravitational acceleration (g) in determining the pendulum's period and motion.
simphys
Messages
327
Reaction score
46
Homework Statement
A pendulum is hanging fromt he ceiling of an elevator. Its period (at small angles) is T sec when the elevator is at rest. We now accelerate the elevator downward w/ 5m/s^2. What is the period now? Be quantitative. [g = 10m/s^2]
Relevant Equations
##T = 2*/pi * sqrt(l / g)##
Hey guys,
Can someone help me understand how to understand this problem intuitively please?
How I understand is that I need to look the acceleration relative to the lift as if it were f.e. on another planet with a different acceleration. this gives me a = g - 5.
But then again if I didn't look up the solution I would not have been able to solve it. So.. I don't really understand this intuitively. I actually thought (before looking at the solution) that it stays the same period T as it is dependent on the gravitational acceleration.
This kind of confuses me, and leaves me feeling that I don't really understand what what the g means in the equation.Thanks in advance.
1691405181213.png
 
Physics news on Phys.org
Think about the extreme fall case, free fall. Why would the pendulum swing at all?
 
simphys said:
... I don't really understand this intuitively. I actually thought (before looking at the solution) that it stays the same period T as it is dependent on the gravitational acceleration.
This kind of confuses me, and leaves me feeling that I don't really understand what the g means in the equation.
Please, see:
http://hyperphysics.phy-astr.gsu.edu/hbase/pendp.html

http://hyperphysics.phy-astr.gsu.edu/hbase/pend.html#c3

For a simple common pendulum, gravity is the only acceleration that gets combined with its mass to produce a restoring force.
Our elevator introduces another acceleration, which vector is aligned with the gravity acceleration vector.

Therefore, a summation of those vectors would result in an increased or decreased net acceleration acting on the center of mass of our pendulum.

If the elevator is accelerating the pendulum upwards, it should be "feeling" heavier, just like you do when riding one of those, and vice-verse.

In one case, both acceleration vectors point in the same direction (vectors addition applies).
In the other case, they point in opposite directions (vectors subtraction applies).
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top