Pendulum SHO but with extra downward acceleration of the pivot

AI Thread Summary
The discussion focuses on understanding the dynamics of a pendulum in a non-standard gravitational environment, specifically when the pivot accelerates downwards. Participants explore how to intuitively grasp the effects of this additional acceleration on the pendulum's motion and period. It is noted that the net acceleration acting on the pendulum's center of mass changes based on the direction of the elevator's acceleration relative to gravity. When the elevator accelerates upwards, the pendulum feels heavier, while downward acceleration makes it feel lighter. This leads to confusion about the role of gravitational acceleration (g) in determining the pendulum's period and motion.
simphys
Messages
327
Reaction score
46
Homework Statement
A pendulum is hanging fromt he ceiling of an elevator. Its period (at small angles) is T sec when the elevator is at rest. We now accelerate the elevator downward w/ 5m/s^2. What is the period now? Be quantitative. [g = 10m/s^2]
Relevant Equations
##T = 2*/pi * sqrt(l / g)##
Hey guys,
Can someone help me understand how to understand this problem intuitively please?
How I understand is that I need to look the acceleration relative to the lift as if it were f.e. on another planet with a different acceleration. this gives me a = g - 5.
But then again if I didn't look up the solution I would not have been able to solve it. So.. I don't really understand this intuitively. I actually thought (before looking at the solution) that it stays the same period T as it is dependent on the gravitational acceleration.
This kind of confuses me, and leaves me feeling that I don't really understand what what the g means in the equation.Thanks in advance.
1691405181213.png
 
Physics news on Phys.org
Think about the extreme fall case, free fall. Why would the pendulum swing at all?
 
simphys said:
... I don't really understand this intuitively. I actually thought (before looking at the solution) that it stays the same period T as it is dependent on the gravitational acceleration.
This kind of confuses me, and leaves me feeling that I don't really understand what the g means in the equation.
Please, see:
http://hyperphysics.phy-astr.gsu.edu/hbase/pendp.html

http://hyperphysics.phy-astr.gsu.edu/hbase/pend.html#c3

For a simple common pendulum, gravity is the only acceleration that gets combined with its mass to produce a restoring force.
Our elevator introduces another acceleration, which vector is aligned with the gravity acceleration vector.

Therefore, a summation of those vectors would result in an increased or decreased net acceleration acting on the center of mass of our pendulum.

If the elevator is accelerating the pendulum upwards, it should be "feeling" heavier, just like you do when riding one of those, and vice-verse.

In one case, both acceleration vectors point in the same direction (vectors addition applies).
In the other case, they point in opposite directions (vectors subtraction applies).
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top