- #51

.Scott

Homework Helper

- 2,554

- 920

Here's the extreme example that I gave in another thread - but now I'll work a little more with it. Entangled particles split. One is measure immediately, the other is stored in a box for a year. In all reference frames, measurement A is made before measurement B. While waiting for the year to go by, we can publish the result of measurement A - and it would be very tempting to say that measurement A is independent of whatever we will eventually do with B. But the Bell inequality shows us that would be an impossible interpretation to consistently maintain. If we don't take the A+B measurement as a single measurement in this case, we would be forced to make arbitrary choices in how we interpret situations where the time period (1 year) was so short that no before/after could be unambiguously determined.

Even more importantly, we could capture thousands of those particles, a thousand each at angle -45,0,+45, storing all of them for a year in boxes. And then at the end of the year, Bill could make measurement B of each one - randomly choosing angles among the -45,0,+45 degrees. Presuming that the Bell inequality was demonstrated, to explain the result in terms of A influenced B, we would have to presume that somehow the "A" measurement got into the "B" box, or influenced Bill's best effort to randomize his measurements.