Periodic Function Fourier Series: Proving with Trigonometric Equations

icystrike
Messages
444
Reaction score
1

Homework Statement



A periodic function of period 2\pi is defined by:
f(t)=\frac{t}{2} , 0<t<2\pi

Show that the trigonometric Fourier series of f(t) is given by:
f(t)=\frac{\pi}{2} - \sum_{n=1}^{\infty} \frac{1}{n}sin(nt)

Homework Equations


The Attempt at a Solution



I've gotten \frac{\pi}{4} for constant C instead of \frac{\pi}{2}
 
Physics news on Phys.org
What have you done so far, show us your working.
 
Since function is odd, An = 0.

Bn = - \frac{1}{2\pi} \frac{2\pi}{n} = -\frac{1}{n}

Thats for now...
 
My advice is to write:

<br /> f(t)=a_{0}+\sum_{n=-\infty}^{\infty}a_{n}\sin nt+b_{n}\cos nt<br />
 
<br /> <br /> f(t)=\sum_{n=-\infty}^{\infty} \frac{(1)^{n+1}}{n}\sin nt<br /> <br />
 
So you compute te A_n's and b_n is the usual way, what you have done with this?
 
attachment.php?attachmentid=33464&stc=1&d=1300961751.jpg


attachment.php?attachmentid=33465&stc=1&d=1300961751.jpg
 

Attachments

  • 2011-03-24 18.10.00.jpg
    2011-03-24 18.10.00.jpg
    11.2 KB · Views: 373
  • 2011-03-24 18.10.37.jpg
    2011-03-24 18.10.37.jpg
    29.8 KB · Views: 392
Hmm, I am at a loss.
 
Back
Top