Perturbation of the simple harmonic oscillator

nowits
Messages
17
Reaction score
0
[SOLVED] Perturbation of the simple harmonic oscillator

Homework Statement


An additional term V0e-ax2 is added to the potential of the simple harmonic oscillator (V and a are constants, V is small, a>0). Calculate the first-order correction of the ground state. How does the correction change when a gets bigger?

Homework Equations


E_0^1=<\psi_0^0|H'|\psi_0^0>

The Attempt at a Solution


\alpha=\frac{m\omega}{\hbar}, E_0^1=\int ^{\infty}_{-\infty} (\frac{\alpha}{\pi})^{1/4}e^{-\alpha x^2/2}V_0e^{-ax^2}(\frac{\alpha}{\pi})^{1/4}e^{-\alpha x^2/2}dx=(\frac{\alpha}{\pi})^{1/2}V_0\int ^{\infty}_{-\infty} e^{(-\alpha -a)x^2}dx
So I suppose this is not what is wanted.
 
Physics news on Phys.org
nowits said:

Homework Statement


An additional term V0e-ax2 is added to the potential of the simple harmonic oscillator (V and a are constants, V is small, a>0). Calculate the first-order correction of the ground state. How does the correction change when a gets bigger?

Homework Equations


E_0^1=<\psi_0^0|H'|\psi_0^0>

The Attempt at a Solution


\alpha=\frac{m\omega}{\hbar}, E_0^1=\int ^{\infty}_{-\infty} (\frac{\alpha}{\pi})^{1/4}e^{-\alpha x^2/2}V_0e^{-ax^2}(\frac{\alpha}{\pi})^{1/4}e^{-\alpha x^2/2}dx=(\frac{\alpha}{\pi})^{1/2}V_0\int ^{\infty}_{-\infty} e^{(-\alpha -a)x^2}dx
So I suppose this is not what is wanted.

What makes you think this is not right?
Have you tried to compute the integral? It's a standard one.
 
nrqed said:
Have you tried to compute the integral? It's a standard one.
\int e^{-\xi x^2}=\frac{\sqrt{\pi}\ erf(\sqrt{\xi}x)}{2\sqrt{\xi}}\ \ \ ?
I've never encountered an error function before in any homework problem, so I automatically assumed that I had done something wrong.
 
That's right, the indefinite integral contains an erf.
But you have more information: you know the boundary conditions and (you should have) \xi > 0. Using
\lim_{x \to \pm \infty} \operatorname{erf}(x) = \pm 1
you can calculate it, and in fact it is just a Gaussian integral,
\int_{-\infty}^\infty e^{-\xi x^2} dx = \sqrt{\frac{\pi}{\xi}}
Remember this -- it's ubiquitous in physics (at least, every sort of physics that has to do with any sort of statistics, amongst which QM, thermal physics, QFT, SFT).
 
Last edited:
Ok.

Thank you both!
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top