Perturbation Techniques and Theory for Nonlinear Systems

sharrington3
Messages
6
Reaction score
0

Homework Statement


Given the equation
\ddot{\theta}=\Omega^2\sin{\theta}\cos{\theta}-\frac{g}{R}\sin{\theta}
Determine a first-order uniform expansion for small but finite theta.

Homework Equations


Other than the equation above, none so far as I am aware.


The Attempt at a Solution


The only thing I could think to do was try to solve this differential equation via the method of undetermined coefficients, which I do not think is right at all. I then planned to expand my solution in a Taylor series about 0. This is from Ali Hasan Nayfeh's Introduction to Perturbation Techniques. My professor gave us a packet of the fourth chapter of the aforementioned text as a basis to solve this and other problems. Nowhere in the text does it give a clear example of what exactly a "first order uniform expansion" is, nor do I even know where to begin. My professor's research interests lie in nonlinear dynamics and chaos, and I fear he is going a little too in depth for my second year physics course. Thank you for any input.
 
Physics news on Phys.org
I'm only making an educated guess here, but I think what you want to do is expand the trig functions using the Taylor series and retain only the lowest-order non-vanishing term. This will leave you with a linear second-order differential equation. Then you want to convert this second-order equation into a system of two first-order equations.
 
I think that finding the solution to the original ODE and then expand it using Taylor series is equivalent to solve the "simplified" ODE that vela suggests. Vela's way is much easier for sure.
 
That's something along the lines of what I thought of doing. I read up on the subject, and "uniform expansion" only means "without secular terms", so the approximation of my system won't blow up as t→∞. I'm just going to do the Taylor series DE thing. Thanks for your input, guys. It's greatly appreciated.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top