Peskin and Schroeder derivation of Klein-Gordon propagator

chern
Messages
10
Reaction score
0
In page 30 of book "An introduction to quantum field theory" by Peskin and Schroeder in the derivation of Klein-Gordon propagator, why p^0=-E_p in the second step in equation (2.54). and why change "ip(x-y)" to "-ip(x-y)"? I thought a lot time, but get no idea. Thank you for your giving me an explanation.
 
Last edited:
Physics news on Phys.org
chern said:
In page 30 of book "An introduction to quantum field theory" by Peskin and Schroeder in the derivation of Klein-Gordon propagator, why p^0=-E_p in the second step in equation (2.54). and why change "ip(x-y)" to "-ip(x-y)"?
It took me a long time to figure that out too, when I first studied P+S.

First, look at this 1D integral:
$$
\int_{-\infty}^{+\infty} dp \; e^{-ipx} ~.
$$ If you perform a change of dummy variable ##p \to p' = -p##, what do you get?

So in the 2nd step of (2.54), they're just converting the ##e^{ip\cdot(x-y)}## of the 2nd term in the last line on the previous page 29, so that both exponentials are the same, i.e., ##e^{-ip\cdot(x-y)}##. (The latter explains "why p^0=-E_p").
 
  • Like
Likes 1 person
Thank you!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...
Back
Top