joshmccraney said:The ODE system looks something like this ##y' = A y##. Let's pick ##y_2 = 0, y_1 = 1##, which implies ##y' = \langle-3,2\rangle##. This implies at the point ##(1,0)## in the phase plane there will be a vector pointing in the direction ##\langle -3,2\rangle##, and hence moving in the direction along the spiral away from the center.
Plot several points and you'll see the behavior, such as the point ##(y_1 = a > 0, y_2 = 0)##. Alternatively, look at the sign of the real component of the eigenvalue to determine whether or not solutions converge to the origin or not.e101101 said:Im not quite sure if that means all solns would be approaching the center? Clockwise or Counterclockwise