Physical Interpretation of point transformation invariance of the Lagrangian

anton01
Messages
4
Reaction score
0

Homework Statement


The problem asked us to show that the Euler-Lagrange's equations are invariant under a point transformation q_{i}=q_{i}(s_{1},...,s_{n},t), i=1...n. Give a physical interpretation.


Homework Equations


\frac{d}{dt}(\frac{\partial L}{\partial \dot{s_{j}}})=\frac{\partial L}{\partial s_{j}}


The Attempt at a Solution



I proved the invariance.
I am stumped with the physical interpretation. Except for the fact that the E-L equations are invariant when we change coordinates pointwise, I don't see any other physical interpretation. But this answer seems just repeating their question. :confused:
 
Physics news on Phys.org
Are coordinates something physical to begin with?
 
voko said:
Are coordinates something physical to begin with?

No they are not. They are something we make in order to do the calculations.
It was just a wild guess really.
 
That's what one should expect physically. Now you have proved that the Lagrangian formalism does not require any special coordinates, they all work. What does that mean about the formalism itself?
 
This means that the Lagrangian is independant of the coordinate system. And this makes sense, because a coordinate system is nothing physical and is arbitrary.
So, this means that the Lagrangian is universal? In other words, it works for any coordinate system.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top