MHB Physics: Calculate Emf, Electric Field in Magnetic Field

  • Thread starter Thread starter Fermat1
  • Start date Start date
  • Tags Tags
    Physics
AI Thread Summary
A meter-long metal rod falling at a constant velocity of 10 m/s generates an electromotive force (emf) in a uniform magnetic field perpendicular to its motion, but the magnetic field strength is not provided. The discussion emphasizes that if there is no current or change in magnetic flux, there will be no emf generated. A loop of wire in a changing magnetic field has its magnetic flux defined as $4t(t+2)$, and participants discuss calculating the electric field between capacitor plates at a specific time. The curl of the magnetic field is calculated, but the need for clarity on whether to find the electric field or its curl is raised. The relationship between current, magnetic force, and gravitational force is highlighted, suggesting that the forces must balance for the rod to fall at a constant speed.
Fermat1
Messages
180
Reaction score
0
1)A meter long metal rod of mass m is falling with a constant velocity of 10 m/s. The rod is attached to two conducting rails. Determine the emf if there is a uniform magnetic field directed perpendicular to the motion of the bar. The resistance has a value of 105 ohms.

I don't know how I can do it when the magnetic field is not given

2)A loop of wire is put in a changing magnetic field. The magnetic flux through the loop is given by $4t(t+2)$. The loop is connected to a parallel plate capacitor that has a plate separation of 15mm. Determine the electic field between the plates at time $t=3$ s.

Can I assume that potential difference equal emf if the wire has no resistance?

3)Let $V=(xyt^3T)i+(x^4tT)j$. Find the curl of the magnetic field and the electric field. I've found the curl.
The curl I found to be $-(4x^3t)j+(yt^3)k$ It's sensible to leave out the units T right?

How do I find the electric field?
 
Mathematics news on Phys.org
Fermat said:
1)A meter long metal rod of mass m is falling with a constant velocity of 10 m/s. The rod is attached to two conducting rails. Determine the emf if there is a uniform magnetic field directed perpendicular to the motion of the bar. The resistance has a value of 105 ohms.

I don't know how I can do it when the magnetic field is not given

It seems to me that if there is no current in the bar, and if there is not change in flux, there won't be an emf.
2)A loop of wire is put in a changing magnetic field. The magnetic flux through the loop is given by $4t(t+2)$. The loop is connected to a parallel plate capacitor that has a plate separation of 15mm. Determine the electic field between the plates at time $t=3$ s.

Can I assume that potential difference equal emf if the wire has no resistance?

That is what I would assume with no more information given.
3)Let $V=(xyt^3T)i+(x^4tT)j$. Find the curl of the magnetic field and the electric field. I've found the curl.
The curl I found to be $-(4x^3t)j+(yt^3)k$ It's sensible to leave out the units T right?

How do I find the electric field?

Since the formula for $V$ contains the unit T, it makes sense to also specify it in an answer. Anyway, since it is an SI unit, it won't hurt much to leave it out.

How did you find the curl of the magnetic field?

And what is being asked exactly? The electric field? Or the curl of the electric field?
 
Fermat said:
1)A meter long metal rod of mass m is falling with a constant velocity of 10 m/s. The rod is attached to two conducting rails. Determine the emf if there is a uniform magnetic field directed perpendicular to the motion of the bar. The resistance has a value of 105 ohms.

I don't know how I can do it when the magnetic field is not given
Lenz's Law says that if the flux through the loop is changing then there will be a force to counteract the changing flux. In this case we know that the rod is falling with a constant speed...that is to say that there must be a force on the rod, equal to the weight of the rod, in the upward direction. What does that tell you about the magnetic field?

-Dan
 
Last edited by a moderator:
I like Serena said:
It seems to me that if there is no current in the bar, and if there is not change in flux, there won't be an emf.

There is a current in the bar-otherwise the bar will accelerate as it falls.
The magnetic force is given by [math]iL \times B[/math], where i is current, L is the bar's length, and B is the magnetic field. The magnetic field is perpendicular to the motion, so the magnitude, [math] iLB \sin \theta [/math], becomes [math]iLB[/math], and the direction, by the right-hand rule, is opposite to the direction of the gravitational force. Since the bar falls with constant velocity, this force is equal in magnitude to the gravitational force. Thus [math] iLB=mg[/math].
But [math] i= \frac{\epsilon}{R} [/math], where [math]\epsilon[/math] is emf. So, Fermat, what do you think you should do now?
Faraday's law, maybe?
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top