MHB Physics: Calculate Emf, Electric Field in Magnetic Field

  • Thread starter Thread starter Fermat1
  • Start date Start date
  • Tags Tags
    Physics
Fermat1
Messages
180
Reaction score
0
1)A meter long metal rod of mass m is falling with a constant velocity of 10 m/s. The rod is attached to two conducting rails. Determine the emf if there is a uniform magnetic field directed perpendicular to the motion of the bar. The resistance has a value of 105 ohms.

I don't know how I can do it when the magnetic field is not given

2)A loop of wire is put in a changing magnetic field. The magnetic flux through the loop is given by $4t(t+2)$. The loop is connected to a parallel plate capacitor that has a plate separation of 15mm. Determine the electic field between the plates at time $t=3$ s.

Can I assume that potential difference equal emf if the wire has no resistance?

3)Let $V=(xyt^3T)i+(x^4tT)j$. Find the curl of the magnetic field and the electric field. I've found the curl.
The curl I found to be $-(4x^3t)j+(yt^3)k$ It's sensible to leave out the units T right?

How do I find the electric field?
 
Mathematics news on Phys.org
Fermat said:
1)A meter long metal rod of mass m is falling with a constant velocity of 10 m/s. The rod is attached to two conducting rails. Determine the emf if there is a uniform magnetic field directed perpendicular to the motion of the bar. The resistance has a value of 105 ohms.

I don't know how I can do it when the magnetic field is not given

It seems to me that if there is no current in the bar, and if there is not change in flux, there won't be an emf.
2)A loop of wire is put in a changing magnetic field. The magnetic flux through the loop is given by $4t(t+2)$. The loop is connected to a parallel plate capacitor that has a plate separation of 15mm. Determine the electic field between the plates at time $t=3$ s.

Can I assume that potential difference equal emf if the wire has no resistance?

That is what I would assume with no more information given.
3)Let $V=(xyt^3T)i+(x^4tT)j$. Find the curl of the magnetic field and the electric field. I've found the curl.
The curl I found to be $-(4x^3t)j+(yt^3)k$ It's sensible to leave out the units T right?

How do I find the electric field?

Since the formula for $V$ contains the unit T, it makes sense to also specify it in an answer. Anyway, since it is an SI unit, it won't hurt much to leave it out.

How did you find the curl of the magnetic field?

And what is being asked exactly? The electric field? Or the curl of the electric field?
 
Fermat said:
1)A meter long metal rod of mass m is falling with a constant velocity of 10 m/s. The rod is attached to two conducting rails. Determine the emf if there is a uniform magnetic field directed perpendicular to the motion of the bar. The resistance has a value of 105 ohms.

I don't know how I can do it when the magnetic field is not given
Lenz's Law says that if the flux through the loop is changing then there will be a force to counteract the changing flux. In this case we know that the rod is falling with a constant speed...that is to say that there must be a force on the rod, equal to the weight of the rod, in the upward direction. What does that tell you about the magnetic field?

-Dan
 
Last edited by a moderator:
I like Serena said:
It seems to me that if there is no current in the bar, and if there is not change in flux, there won't be an emf.

There is a current in the bar-otherwise the bar will accelerate as it falls.
The magnetic force is given by [math]iL \times B[/math], where i is current, L is the bar's length, and B is the magnetic field. The magnetic field is perpendicular to the motion, so the magnitude, [math] iLB \sin \theta [/math], becomes [math]iLB[/math], and the direction, by the right-hand rule, is opposite to the direction of the gravitational force. Since the bar falls with constant velocity, this force is equal in magnitude to the gravitational force. Thus [math] iLB=mg[/math].
But [math] i= \frac{\epsilon}{R} [/math], where [math]\epsilon[/math] is emf. So, Fermat, what do you think you should do now?
Faraday's law, maybe?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top