Piece wise function and Laplace Transform

brad sue
Messages
270
Reaction score
0
Hi,
I need to find the piece wise function whose the the Laplace Transform is:

2/s+e-3x(1/s2)+4e-3x(1/s)

I found for f as function of the unit step function u:
f(x)=2+x*u(x-3)+u(x-3)

Now I have difficulty to put the function in piece wise form like:

f(x)= 2 for 0<x<2 and f(x)=... for x>3

How can I found the expression of f(x) for x>3??

Thank you
B
 
Physics news on Phys.org
The definition of the heaviside unit step function is:

U(t-t_0) = \left[ \begin{array}{c}1\,\,t\geq t_0 \\ 0\,\,t&lt;t_0 \end{array}

right?

so:

first factor your function:
f(x)=2+x*u(x-3)+u(x-3)

f(x) = 2+u(x-3)(x+1)
Now plug in the definition of the function:f(x)=2+(1)(x+1) \,\,\,t \geq 3
f(x)=2+(0)(x+1) \,\,\,t &lt; 3

does that makes sense?
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top