Plane determined by intersecting lines

  • Thread starter Thread starter tasc71
  • Start date Start date
  • Tags Tags
    Lines Plane
tasc71
Messages
2
Reaction score
0

Homework Statement


Find the point of intersection of the lines: x=2t+1, y=3t+2, z=4t+3, and x=s+2, y=2s+4, z=-4s-1, and then find the plane determined by these lines.


Homework Equations


How do i find the plane determined by these lines?


The Attempt at a Solution


Ive read through the text, and i figured out the first part about where they intersect:
v=<2,3,4>
Pt. A=(1,2,3)
2(x-1)+3(y-2)+4(z-3)=0
2x+3y+4z=20
then i substituted the 2nd parametric equation into the x,y,z variables and solved for s.
s=-1
then i plugged s=-1 back into the parametric equation to find x,y,z for intersection
the equations intersect at (1,2,3)

Now I'm stuck...how do i find the planes determined by these lines?
 
Physics news on Phys.org
tasc71 said:

Homework Statement


Find the point of intersection of the lines: x=2t+1, y=3t+2, z=4t+3, and x=s+2, y=2s+4, z=-4s-1, and then find the plane determined by these lines.


Homework Equations


How do i find the plane determined by these lines?


The Attempt at a Solution


Ive read through the text, and i figured out the first part about where they intersect:
v=<2,3,4>
Pt. A=(1,2,3)
The equations of your lines are x= 2t+ 1, y= 3t+ 2, and z= 4t+ 3. If x= 2t+ 1= 1, then t= 0 so y= 2 and z= 3. Also x= s+ 2= 1 for s= -1 and then y= 2(-1)+ 4= 2, z= -4(-1)- 1= 3. Yes, the two lines intersect at that point.

But v = <2, 3, 4> is a vector pointing in the direction of the first line- it is NOT perpendicular to the plane which is what you need. (In fact, since the lines lie in the plane, <2, 3, 4> is a vector in the plane, not perpendicular to it.)

2(x-1)+3(y-2)+4(z-3)=0
2x+3y+4z=20
then i substituted the 2nd parametric equation into the x,y,z variables and solved for s.
s=-1
then i plugged s=-1 back into the parametric equation to find x,y,z for intersection
the equations intersect at (1,2,3)

Now I'm stuck...how do i find the planes determined by these lines?
The coefficients in the parametric equations give vectors <2, 3, 4> and <1, 2, -4> which point in the directions the lines and so are two vectors in the plane. You want a vector perpendicular (normal) to the plane. Take the cross product of those two vectors.

 
The standard equation for a plane is a(x - x_0) + b(y - y_0) + c(z - z_0) = 0, where \vec{n} = &lt;a, b, c&gt; is the normal vector to the plane. Now, if you know two vectors (the direction vectors of your 2 lines) that are already on the plane, can you think of any operation between two vectors that gives you a normal vector (thus giving you a normal vector to your plane)? Can you get the rest?
 
  • Like
Likes NUR AFZA
darn you HallsofIvy!...beat me by a minute :P
 
Great! Thanks a lot guys!
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top