- #1
HUANG Huan
- 1
- 0
Suppose an optical scalar wave traveling in Z direction. Using the diffraction theory of Fourier Optics, we can predict its new distribution after a distance Z. The core idea of Fourier Optics is to decompose a scalar wave into plane waves traveling in different directions. But this decomposition process ignores the polarization factor of different plane wave components, i.e. each plane wave has a different polarization direction, which is not necessarily in XY plane. So, if we consider the polarization directions when adding all plane wave components, we may not obtain the original scalar wave.
why can we use plane wave decomposition method of Fourier Optics? Is it because it is a scalar wave? Or if we demand that all the plane wave components make a small angle with z axis, then it is possible to ignore the polarization direction differences? Thank you!
why can we use plane wave decomposition method of Fourier Optics? Is it because it is a scalar wave? Or if we demand that all the plane wave components make a small angle with z axis, then it is possible to ignore the polarization direction differences? Thank you!