I already took 3 quarters of EM and I'm ashamed to say I didn't learn anything the final quarter, where we covered the most interesting topics. Bah.(adsbygoogle = window.adsbygoogle || []).push({});

One thing that I'm still confused about are plane waves. I understand the description of a regular sine wave on string. If you wiggle it once, you'll get a single wave traveling along the string and I can tell you the amplitude and how fast it's going and where it is.

I've also seen pictures like this depicting a photon:

Where E and B are perpendicular to one another and the photon is traveling in the direction of propagation of both. But what I don't get are the E and B fields actually. A more energetic photon will have higher frequencies for the E and B fields, correct?

Butwhereare these fields? Let me explain. I'll take the Yellow arrows as being the E field, and I am standing at a point where E = 0. Then, as a photon zooms by me, will I gradually feel the E-field increase to a maximum and then decrease back to 0, then go negative, and finally back to 0 and then it will stay at 0 forever? Where the time it takes for this to happen is the 1/frequency of the photon (so one wavelength).

Because that picture makes it seem like the E and B fields extend infinitely in the x direction, which is where the photon is traveling.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Plane Waves vs. Waves on a String

**Physics Forums | Science Articles, Homework Help, Discussion**